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1 Introduction
In recent years, microstructures of advanced materials have become increasingly
complex, incorporating typically more than one microstructural feature to adjust the
material properties according to specific needs. This holds especially in the case when
more than one phase is present. Usually, multiple phases are introduced to improve
strength and ductility at the same time like, e.g., in dual phase (DP) steels (Tasan
et al., 2015). To simulate the behaviour of such complex materials, the underlying
effects such as interaction of different phases, hardening of slip systems, twinning etc.
have to be considered in order to produce applicable results.

In this context, crystal plasticity (CP) simulations have proven to be a powerful
tool to determine the local and global mechanical response of metallic microstructures
(Cailletaud et al., 2003; Roters et al., 2010a,b, 2013). Hence, a lot of effort has been
spent in recent years on improving this technique by developing more accurate, physics
based constitutive laws on the single grain level. However, these improvements made
a major drawback of CP modelling even more visible: the high computational costs
associated with these calculations.

The computation time needed to solve a CP problem on the continuum level can be
categorised into

• the evaluation of the selected constitutive law, and

• the solution of the associated mechanical boundary value problem (BVP).

More complex material models increase the computational cost of the constitutive
evaluation significantly, hence there is always a trade-off between simulation quality
and computation time in the design of a material point model. However, using an
improved BVP solver can reduce computation costs without sacrificing accuracy.

In this thesis, the capabilities of high-resolution CP simulations are presented and
discussed. To enable the simulation of highly resolved microstructures, both above
mentioned contributions to the runtime have to be kept small. This is done by (i) using
rather simple—and therefore fast—constitutive models, and by (ii) using an effective
spectral method employing fast Fourier transforms (FFTs) for solving the partial
differential equations (PDEs) describing the mechanical behaviour. This alternative
to the typically used finite element method (FEM) (see e.g. Bathe, 2002) for solving
the system of partial differential equations resulting from strain compatibility and
static equilibrium has been introduced by Moulinec et al. (1994, 1998) in the context
of material mechanics. While the spectral method based solvers show exponential
convergence due to the use of trigonometric polynomials as ansatz functions, their
application is limited to volume elements (VEs) with periodic boundary conditions
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2 1 Introduction

(BCs) for the same reason. More specifically, the volume under consideration is
copied repeatedly, expanding it to an infinite body. This approach does not only
allow the study of local quantities in the VE, but also—if the selected microstructure
is representative for the material—prediction of the global homogenised material
response.

In this thesis, it is shown how high-resolution CP simulations can help to improve
the knowledge about several investigated material systems, ultimately aiming at the
development of structural materials with enhanced properties. As outlined on various
examples, full-field numerical simulations of representative volume elements (RVEs)
with high resolution are required for this task, as the local microstructural features
determine the activation of the concurrent deformation mechanisms in a non-trivial
way.

This thesis is structured as following: First, the computational framework used
is given in chapter 2 “Modelling Framework”. This chapter is further subdivided
into the introduction of a mathematical framework for describing a body under load
(section 2.1 “Continuum Mechanics”), the presentation of the constitutive models
(section 2.2 “Crystal Plasticity”), and the outline of the aforementioned spectral
solver in section 2.3). Secondly, the performed simulations including the results are
presented in chapter 3 “Simulations”. The simulations are classified into two categories:
Real microstructures and artificial microstructures, presented in section 3.1 “Real
Microstructures” and section 3.2 “Artificial Microstructures”, respectively. Finally, in
chapter 4 “Summary and Outlook” a summary and the conclusions drawn from the
presented work are given.



2 Modelling Framework
The simulations presented in this work were performed using the Düsseldorf ad-
vanced material simulation kit (DAMASK) by Roters (2011) and Roters et al. (2012).
DAMASK is a software package that provides various constitutive models and ho-
mogenisation schemes for crystal plasticity (CP) simulations at different length scales.
DAMASK is open source software, developed here at the Max-Planck-Institut für
Eisenforschung GmbH (MPIE). It provides a flexible interface that allows employing
easily various solvers for the mechanical boundary value problem (BVP). Currently,
the commercial finite element method (FEM) solvers Abaqus (via the user subroutines
Umat/Vumat) and MSC.Marc (via the user subroutine Hypela2) as well as an in-
tegrated spectral method based solver are supported. In order to allow high-resolution
simulations, several parts of DAMASK have been optimised in the framework of this
Ph.D. project to reduce memory consumption and computation time. The performance
of DAMASK for a simple model geometry is shown in appendix B.

As usual, the CP models are formulated in a continuum mechanics framework to
describe the mechanical behaviour of a body under consideration. In section 2.1
“Continuum Mechanics”, a mathematical notation is introduced that allows modelling
an arbitrary body under external loads. Equipped with this vocabulary, the constitutive
models used in this work are introduced in section 2.2 “Crystal Plasticity”. What
follows is an outline of the solver used to find a physically legitimate solution of the
modelled problem in section 2.3 “Spectral Solver”.

2.1 Continuum Mechanics
In continuum mechanics, the macroscopic behaviour of a body is described using a
hypothetical continuous medium. According to this assumption, any object completely
fills the space it occupies. This allows describing the behaviour of the material with
continuous mathematical functions.

In the context of continuum mechanics, the following set of equations has to be
fulfilled for a legitimate solution:

1. compatibility of deformation

2. mechanical equilibrium

3. constitutive law

To enable a framework, in which these equations can be solved, in this section
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4 2 Modelling Framework

first the different configurations of a body under load are shown in subsection 2.1.1
“Configurations”. From the configurations, strain and stress measures are derived in
subsection 2.1.2 “Strain Measures” and subsection 2.1.3 “Stress Measures”, respectively.
The condition for compatibility is related to the deformation and, hence, outlined in
section 2.1.2. Similarly, the equilibrium condition is discussed in section 2.1.3. The
details of the constitutive laws used are presented in section 2.2 “Crystal Plasticity”.
The fundamentals here are referring to Diehl (2010), most of the concepts can also be
found in, e.g. McGinty (2015).

2.1.1 Configurations

Figure 2.1: Continuum body shown in the unde-
formed and a deformed configuration.

Let B be a body that is assumed
to be a composition of an infinite
number of material points. In the
time-independent undeformed or ref-
erence configuration it occupies the
region B0. In the time-dependent de-
formed or current configuration, the
region Bt is filled by B. The location
of the material points in the unde-
formed state is given by the vectors
x,x ∈ B0 and in a deformed state
by the vectors y,y ∈ Bt. This sit-
uation is illustrated for an example
configuration in fig. 2.1. In general,
for each configuration a different ba-
sis with corresponding unit vectors
exists. However, in this work, the
same Cartesian coordinate system
is used in both configurations which

allows skipping the explicit notation of their unit vectors.
Any deformation of the body can be described in both, the reference and the current

configuration. In the material or Lagrangian description, each particle belongs to its
current spatial location. In Eulerian or spatial description, the location belongs to
the particle. In other words, the Lagrangian description is based on the question “At
which location is the particle?”, while the Eulerian description answers the question
“Which particle is at the location?”. This work—as common for solid mechanics—uses
a Lagrangian description. Hence, a deformation map χ(x) : x ∈ B0 → y ∈ Bt is
introduced that maps points x in the reference configuration to points y in the current
configuration.

The displacement u of a material point is the difference vector from a point in
reference configuration B0 to the deformed configuration Bt:

u(x,t) = χ(x,t) − x (2.1)
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with u being a continuous function. Focussing at a given time, i.e. a fixed deformation
state, allows simplifying the notation to u(x) = χ(x) −x which is also used in fig. 2.1.

A line segment dx in an infinitesimal neighbourhood of a material point x in the
reference configuration (see fig. 2.1) is pushed forward into the current configuration
by:

y + dy = y +
∂y

∂x
· dx + O(dx2) (2.2)

Neglecting terms of higher order, dy can be expressed as:

dy =
∂y

∂x
· dx

=
∂χ(x)

∂x
· dx

= ∇χ · dx

= Gradχ︸ ︷︷ ︸
=:F (x)

· dx,

(2.3)

where F (x) is a 2nd order tensor called the deformation gradient and ∇ is the “del”
operator (Schey, 1973). To simplify the notation, in the following, the argument x
is dropped whenever it is possible, i.e. F (x) is denoted as F only. The deformation
gradient maps the vector dx at x in the reference configuration to the vector dy at y
in the current configuration. The deformation tensor has one basis in the reference
configuration and one in the current configuration, it is therefore called a 2-point tensor.
The inverse of the deformation gradient, F−1, maps an element from the current to
the reference configuration. It is sometimes called the spatial deformation gradient
in contrast to the the material deformation gradient F . The spatial line segment dy
is called the “push forward” of the material line segment dx, which in turn can be
called the “pull back” (performed by F−1) of dy.

For a moving body, the position of the material points varies with time. The material
velocity field is defined as:

v =
du(x)

d t
= u̇

= χ̇.

(2.4)

u̇ = χ̇ holds because the points in the reference configuration do not change their
position, i.e. dx/ d t = 0. The spatial gradient of the velocity field is:

L =
∂v

∂y
, (2.5)
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where L is called the velocity gradient. Using the chain rule, it can be expressed as

L = Ḟ · F −1. (2.6)

Because the velocity gradient is an Eulerian quantity (McGinty, 2015), the loading
of a body with a constant velocity gradient will result in the same rate of deforma-
tion independently of the shape in the current configuration. Equation (2.6) allows
expressing it conveniently as 2-point quantities.

2.1.2 Strain Measures
In the general case, F contains a rotation and a stretch. Being an invertible tensor, a
unique decomposition called “polar decomposition” exists for F :

F = V · R
= R · U ,

(2.7)

where R is the rotation tensor, V is called the left stretch tensor and U the right
stretch tensor. F , U , and V have the same determinant, called the Jacobian (J):

J = det(F ) = det(U) = det(V ). (2.8)

A pure rotation does not change the shape of the body and should therefore result in
zero strain. Hence, any strain measure should depend on V or U only. In other words,
any strain measure is valid that quantifies a distance between a given deformation
gradient and its rotational part.

Inserting eq. (2.1) into eq. (2.3) allows expressing the deformation gradient as:

F =
∂(x + u)

∂x

= I +
∂u

∂x
.

(2.9)

H0 := ∂u
∂x is called the displacement gradient. The tensor I is the identity tensor, also

called the unit matrix.
Displacement and deformation gradient are means of describing the deformation of

a body. In the same way as F is called the material deformation gradient, H0 is called
the material displacement gradient. The spatial displacement gradient is defined as
I − F−1 and denoted here as as Ht.

Deformation gradient, displacement gradient and their respective inverses are 2-point
tensors. However, the deformation can be expressed in the reference configuration only
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as:

dy · dy = (F · dx) · (F · dx)
= dx · (F T · F )︸ ︷︷ ︸

=:C

· dx. (2.10)

C = U2 is called the right Cauchy–Green deformation tensor. It is a symmetric
tensor completely in the material configuration.

The change of length (i.e. a strain) can be written as:

dy · dy − dx · dx = dx · C · dx − dx · dx

= dx · (C − I)︸ ︷︷ ︸
=:E0·2

· dx. (2.11)

E0 := 1
2 (C − I) = 1

2 (F T · F − I) is called the Green–Lagrange strain tensor. It
depends only on the right Cauchy–Green deformation tensor and is, therefore, a
valid strain measure written in the reference configuration.

A similar transformation as in eq. (2.10) can express the deformation in the current
configuration:

dx · dx = (F −1 · dy) · (F −1 · dy)
= dy · (F−T · F −1)︸ ︷︷ ︸

=:B−1

· dy. (2.12)

B−1 := F−T · F −1 implies B = F · F T . The tensor B = V 2 is called the left
Cauchy–Green deformation tensor. It is a symmetric tensor completely in the
current configuration.

The change of length under a deformation can be expressed as:

dy · dy − dx · dx = dy · dy − dy · B−1 · dy

= dy · (I − B−1)︸ ︷︷ ︸
=:Et·2

· dy. (2.13)

Et := 1
2 (I − B−1) = 1

2 (I − F−T · F −1) is called the Euler–Almansi strain tensor.
As a function only of the left Cauchy–Green deformation tensor it is completely in
the current configuration and a valid strain measure.

The push forward and pull back are also defined for the deformation measures. The
push forward of the Green–Lagrange stretch tensor is the Euler–Almansi stretch
tensor and, consequently, the pull back performs the inverse operation:

Et = F−T · E0 · F −1 ⇔ E0 = F T · Et · F . (2.14)

For small strains, i.e. y − x ≈ 0, the linearisation of the Euler–Almansi strain
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tensor and the Green–Lagrange strain results in the same strain tensor. It is called
the Cauchy strain tensor ε:

εij =
1
2

(ui,j + uj,i)

≈ E0,ij

≈ Et,ij ,

(2.15)

when using index notation and Einstein convention. According to Einstein notation
or Einstein summation, it is implicitly summed over an index variable that appears
twice in a product. Hence, in vector notation it reads as:

ε =
1
2

(∇u + (∇u)T). (2.16)

With ω := 1
2 (∇u − (∇u)T) denoting the rotation tensor, the displacement gradient

can be written in the infinitesimal strain framework as:

∇u = ε + ω. (2.17)

It can be shown that this small strain formulation (infinitesimal strain formulation)
is not rotation-invariant for large rotations, and, hence, is a valid approximation for
small deformations only.

To ensure that gaps or overlaps do not develop within the continuum body, i.e. not to
violate the basic assumption of a continuous medium, certain mathematical conditions
have to be satisfied. A body that deforms without developing any gaps/overlaps is
called a compatible body; hence a compatibility condition can be used to determine
whether a particular deformation is permissible.

For infinitesimal strains, the displacements of a compatible body must be obtainable
from integrating the strains. This is possible for

eikr ejls εij,kl = 0. (2.18)

where eijk is the permutation symbol.
In the finite strain formulation, the strain field of a compatible body originates from

a curl free deformation gradient field:

0 = CurlF
= ∇ × F .

(2.19)

Strain measures in one dimension
Strain measures are much simpler to compare in the one-dimensional case due
to the absence of any rotations. In one dimension, any deformation can be
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described by two parameters: The length in the current configuration lt and
the length in the reference configuration l0. By defining the stretch ratio as
λ := lt/l0, the three presented strain measures and the limits for infinite tension
and infinite compression read as:

Table 2.1: Definition of strain measures and behaviour for tension and com-
pression.

strain measure definition compression tension
Green–Lagrange

1
2 (λ2 − 1) lim

λ→0
= − 1

2 lim
λ→∞

= ∞
Euler–Almansi

1
2 (1 − 1

λ2 ) lim
λ→0

= −∞ lim
λ→∞

= 1
2

Cauchy λ − 1 lim
λ→0

= −1 lim
λ→∞

= ∞

From table 2.1 it can be seen that the measures are not symmetrical and reach
different limits for infinite tension and infinite compression. A measure that
overcomes these inconsistencies is the logarithmic strain εlog := ln(λ). Tension
or compression applied at the same rate (see eq. (2.4) for the tensorial case) for
a given time will result in a logarithmic strain which differs only in the algebraic
sign.

Moreover, for both, the spatial and the material case, different strain measures
with power α of λ can be derived based on the formula 1/α(1 − λ−α). For the
material measures, the exponent α has a negative sign, for the spatial measures
a positive one. From table 2.1 it can be seen that λ contributes with its second
power to the Green–Lagrange and the Euler–Almansi strain. The strain
measure of order 0 is the logarithmic strain.

2.1.3 Stress Measures
Stress is the force per area acting on the material. As introduced in section 2.1.1, for
a general deformation state a distinction has to be made between the reference and
the current configuration. This means that different stress measures exist, depending
on the configuration in which force and area are defined.

In the current configuration, a force Δrt on an area Δat with normal vector nt
results in:

tt(nt) = lim
Δat→0

Δrt

Δat
(2.20)

where tt is called the vector of surface traction or Cauchy traction. The Cauchy

stress tensor or “true stress tensor” σ is defined by

tt(y,t,nt) =: σ(y,t) · nt, (2.21)

as the solution that holds for all normal directions t. The Cauchy stress is a 2nd



10 2 Modelling Framework

order tensor in spatial coordinates.
Scaling the traction tt from to the current area Δat to the area in reference con-

figuration Δa0 results in the so-called pseudo traction vector t0,t. It is also called
nominal or 1st

Piola–Kirchhoff traction vector and is determined by looking at an
infinitesimal force drt:

d rt = tt d at

= t0,t d a0.
(2.22)

The vector notation of the areas in the reference and current configuration is
dat = nt d at and da0 = n0 d a0, respectively. The deformation of an area can be
expressed by dat = J F−T · da0. This allows the transformation of eq. (2.22) and
eq. (2.21) into:

t0,t =
(
J σ · F−T

)︸ ︷︷ ︸
=:P

·n0. (2.23)

The product of the two 2nd order tensors and the Jacobian is called the 1st
Piola–

Kirchhoff stress P . Like F , P is a 2-point tensor (one basis in spatial basis and
one in material base). It is a non-symmetric tensor of 2nd order.

To get a stress measure in the current configuration only, the resulting force d rt in
reference configuration can be pushed forward as:

d r0 = F−1 · d rt

= F−1 · tt,0 d a0,
(2.24)

with t0 := F−1 · tt,0 being called the 2nd
Piola–Kirchhoff traction vector and

t0 =
(
J F−1 · σ · F−T

)︸ ︷︷ ︸
=:S

·n0 (2.25)

holds. The tensor S is called the 2nd
Piola–Kirchhoff stress tensor. It is a pure

material, symmetric tensor of 2nd order. The 2nd
Piola–Kirchhoff stress tensor is

the pull back of the Cauchy stress tensor.
In static equilibrium, no forces are acting on the body forcing parts of it to change

their position. If a body is in static equilibrium the components of the Cauchy stress
tensor in every material point in the body satisfy the following equilibrium condition:

σji,j = 0, (2.26)

which is written in the large strain formulation conveniently as (Volokh, 2007)
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0 = DivP

= ∇ · P .
(2.27)

2.2 Crystal Plasticity
A CP model is a constitutive law, i.e. it relates the response of a material to an
external load. Using the terminology introduced before, a CP model relates a stress (see
subsection 2.1.3 “Stress Measures”) to a strain (see subsection 2.1.2 “Strain Measures”)1.
This relation is necessary to complement the (static) mechanical equilibrium eq. (2.27)
and the strain compatibility condition eq. (2.19). In comparison to other, e.g. more
general constitutive laws, CP models take into account the anisotropic stress–strain
relation of crystalline materials, such as metals or water ice. The reason for the
anisotropic behaviour of crystalline materials is the regular arrangement of atoms in
the solid state. Two close-packed arrangements are possible: the face-centered cubic
(fcc) and the hexagonal close-packed (hcp) lattice structure. The hcp structure is,
however, only a model and real crystallites have hexagonal (hex) structures with a
stacking order like hcp, but a c/a-ratio different from the ideal value of c/a ≈ 1.633.
A third important lattice structure exists for metals: the body-centered cubic (bcc).
It is not a closest packed lattice, but its volume ratio is close to the highest possible
ratio achieved by hcp and fcc (Gottstein, 2004). Most metals and alloys of technical
interest solidify in one of these three structures.

Notation of crystallographic directions

Directions and planes in cubic crystal structures are usually described using the
Miller index notation. For convenience reasons, hex structures are usually
notated in the Bravais–Miller notation that extends the 3 digits of the Miller

notation by a fourth, linearly dependent digit. The digits are written in square
brackets [h k l] for the direction given by the vector η · (h, k, l), with η being
an arbitrary factor. A negative direction is denoted by a bar as in [1 1 0] for
direction (−1, 0, 0). The family of crystal directions that are equivalent to the
direction [h k l] is notated as 〈h k l〉 (in angle brackets). The plane orthogonal to
the direction η · (u, v, w) is written in normal brackets: (u v w). The notation
{l m n} (in curly brackets) is used for all planes that are equivalent to (u v w)
by the symmetry of the lattice.

To express (lattice) rotations in the 3 dimensional space, often Euler angles
are used. The 3 Euler angles define a rotation around a certain fixed axis and,
hence, a convention for axis definition and rotation order is needed. Typically,

1 For most material behaviour this view is too simplistic, since loading conditions are of importance
as well.
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the (z, x’, z”) convention is used and the angles are named ϕ1,Φ,ϕ2 (Bunge–
Euler notation). A simple rotation, bringing the [0 1 0] direction pointing to
[0 0 1] is given by the three angles ϕ1 = 0.0, Φ = 90.0,ϕ2 = 0.0.

Here, first the conceptual details of the CP framework DAMASK are outlined,
followed by a brief presentation of the exact CP models used in this work in subsec-
tion 2.2.1 “Isotropic Material Model” and subsection 2.2.2 “Phenomenological Material
Model”. While the DAMASK framework provides more advanced, physical-based
models (incorporating e.g. TWIP effects, (Steinmetz et al., 2013), or dislocation
flux, Reuber et al., 2014), getting the correct values for the constitutive parameters
(whose number is increasing with increasing complexity of the model) requires much
higher efforts without guaranteeing a better physical understanding of the mechanical
behaviour.

In CP modelling, it is common practice to multiplicatively split up the deformation
gradient F into an elastic part, Fe, and a plastic part, Fp (Reina et al., 2014):

F = FeFp ⇔ Fe = F Fp
−1 ⇔ Fp = Fe

−1F . (2.28)

The split is introduced to the combined elastic–plastic response usually seen in metals.
For small strains (and short loading times), the behaviour is usually purely elastic, i.e.
reversible. As usual, linear (Hookean) elasticity is assumed in DAMASK. Hence, the
second Piola–Kirchhoff stress depends on the elastic Green–Lagrange strain
via the anisotropic elastic stiffness C. This relation is written in an artificial, only
elastically deformed configuration that is called the “intermediate configuration”1

(Roters et al., 2010a):

S = C (Fe
TFe − I)/2. (2.29)

Since C relates two symmetric tensors, it is itself symmetric and usually the 3×3×3×3
tensor is written as a 6 × 6 matrix. Depending on the crystal lattice, C takes a special
form and can be expressed by 3 (cubic structures, i.e. bcc and fcc) or 5 (hex) variables
only.

The stress S is acting as a driving force for the plastic velocity gradient Lp. Lp
depends on the underlying microstructure represented by a state variable vector ξ of
the plasticity model and possibly other variables:

Lp = f(S,ξ,...) (2.30)

with f depending on the details of the used plasticity model.

1 Comparing to section 2.1.1 shows that it is formally equivalent to the stress–strain relation in
the reference configuration. The given relation is therefore a valid approximation for small elastic
strains, where the difference between reference and intermediate configuration is negligible.
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From eq. (2.6) follows

Lp = ḞpFp
−1 ⇔ Ḟp = LpFp. (2.31)

The rate of the plastic deformation Ḟp depends not only on the state of the material,
but also on the loading: After reaching the yield stress or for long holding times,
the material typically deforms plastically (Sedláček, 2009). The plastic deformation
remains even when the material is not under loading any more.

The set of non-linear eqs. (2.28) to (2.31), for which the dependency is summarised
in fig. 2.2 needs to be solved iteratively. In DAMASK, a Newton-Raphson scheme is
used to do that. Since Lp is used as a predictor, the tangent ∂Lp

∂S needs to be computed
as well by the plasticity model. More details about the implementation are given by
Kords (2013).

The core of each CP model is the formulation of eq. (2.30). In this equation, the
plastic deformation of the material and its dependence to the aforementioned influences
is incorporated. While some models take only dislocation glide as a carrier of plastic
deformation into account, others include additionally mechanical twinning, phase
transformations, etc. Depending on the crystal structure, different planes are densely
packed and therefore the preferred slip planes. For fcc these are the {1 1 1}, for bcc the
{1 1 0} or {1 1 2}, and for hex usually at least the {0 0 0 1} planes. Typically densely
packed directions serve as slip directions; these are 〈1 1 0〉 for fcc and 〈1 1 1〉 for bcc.
For hex usually 〈1 1 2 0〉 is the preferred slip direction on {0 0 0 1} planes.

As it can be seen from eq. (2.30), the material response depends on the state ξ.
Therefore, any CP model needs to be completed by a second equation that describes
the evolution of the state:

ξ̇ = g(S,ξ,...), (2.32)

where the details again depend on the selected model. In DAMASK, various integration
schemes for the state update exist (Kords, 2013). The two integration schemes are
performed staggered, i.e. eqs. (2.28) to (2.31) are solved at a fixed plastic state, followed
by a state update, the solution of eqs. (2.28) to (2.31), and so forth until a converged
solution is achieved within the given tolerances.

Using eqs. (2.23) and (2.25) for conversion from P to S a CP model (i.e. eqs. (2.28)
to (2.31) can be summarised as

P (x) = f(x,F , ξ, ...) (2.33)

which is a stress–strain relation with additional dependence on the state and—
denoted by “. . .”—external boundary conditions (BCs) like loading rate and tempera-
ture.
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Figure 2.2: Generalised elasto-viscoplastic calculation loop.

2.2.1 Isotropic Material Model
The isotropic formulation is not a CP model, but a simplification of the phenomeno-
logical material model. No slip or twin systems are incorporated, i.e. when using this
model for metals their crystalline structure—and hence, their orientation dependent
behaviour—is neglected. The (scalar) von Mises stress that is related to the second
invariant J2 of the deviatoric stress S∗ = devS, is assumed to drive dislocation motion.
Plastic shear occurs at the rate

γ̇ = γ̇0

(√
3J2

M ξ

)n

= γ̇0

(√
3
2

||S∗||F
M ξ

)n

(2.34)

with the reference shear rate γ̇0, the stress exponent n, and the orientation (Taylor)
factor M . The scalar material state, i.e. the resistance to plastic flow ξ, evolves
asymptotically towards ξ∞ with plastic shear γ according to the relationship

ξ̇ = γ̇ h0

∣∣∣∣1 − ξ

ξ∞

∣∣∣∣a sgn
(

1 − ξ

ξ∞

)
(2.35)

with parameters h0 and a. The plastic velocity gradient Lp scales with the rate of
shear and its “direction” is set equivalent to that of S∗:

Lp =
γ̇

M

S∗

||S∗||F
, (2.36)

i.e. eqs. (2.34) and (2.36) make up a concrete formulation for eq. (2.30) and eq. (2.35)
makes up one for eq. (2.32).
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2.2.2 Phenomenological Material Model
This model is based on the assumption that plastic deformation occurs on a slip or
twin system when the resolved shear stress exceeds a critical value, i.e. it is not capable
of resolving twin formation spatially. The resolved shear stress depends on the amount
of the applied stress, the angle between loading and the plane normal, and the angle
between loading and the slip direction. The exact relation is known as Schmids law
(Gottstein, 2004). The widely used model was first described by Hutchinson (1976) for
fcc crystals and is implemented in DAMASK for fcc, bcc, and hex crystal structures.

The microstructural state is parametrised in terms of resistances ξ on Ns+t = Ns +Nt
slip and twin system.

The resistances on the k = 1, . . . ,Ns slip systems evolve from their initial value
ξ0 asymptotically to a system dependent saturation value with shear γm on all slip
systems according to the relationship

ξ̇k = h0,slipslip

Ns∑
m=1

|γ̇m|
∣∣∣∣1 − ξm

ξm∞

∣∣∣∣a sgn
(

1 − ξm

ξm∞

)
hkm+h0,sliptwin

Nt∑
m=1

γ̇mhkm, (2.37)

where hkm is an interaction matrix and h0 and a are system dependent fitting parame-
ters; ξ∞ is bounding the resistance evolution.

The resistances on the k = 1, . . . ,Nt twin systems evolve in a similar way and depend
on shear on slip and twin systems:

ξ̇k = h0,twinslip

Ns∑
m=1

|γ̇m| hkm + h0,twintwin

Nt∑
m=1

γ̇mhkm. (2.38)

Since this evolution has no upper bound, additionally the twin volume fraction on all
twin system needs to be limited to a value less than 1.0.

Given a set of current slip resistances, shear on each slip system evolves at a rate of

γ̇k = γ̇0

∣∣∣∣τk

ξk

∣∣∣∣n sgn
(
τk
)

, (2.39)

with τk = S · (sk ⊗ nk) being—according to Schmids law—the resolved shear stress
for applied stress S and the unit vectors along the slip direction sk and along the slip
plane normal nk.

Again, slip due to mechanical twinning is handled in a slightly different way that
accounts for the unidirectional character of twin formation:

γ̇k =

(
1 −

Nt∑
m=1

γm/γm
tw

)
γ̇0

∣∣∣∣τk

ξk

∣∣∣∣n H (τk
)

, (2.40)

where H is the Heaviside function and γtw the specific shear due to mechanical
twinning with a value depend on the twin system.
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The sum of slip and twin shear determines the plastic velocity gradient:

Lp =

(
1 −

Nt∑
m=1

γm/γm
tw

)
Ns∑

k=1

γ̇k sk ⊗ nk +
Nt∑

k=1

γ̇k sk ⊗ nk. (2.41)

Comparing eq. (2.41) with eq. (2.36) and eqs. (2.37) and (2.38) with eq. (2.35) shows
how the slip/twin resolved formulation allows a more detailed description of plastic
behaviour. The drawback is that it is computationally more expensive e.g. the number
of state variables increases from 1 to Ns+t.

2.3 Spectral Solver
For general cases, the solution for (static) equilibrium and strain compatibility under
the given BCs has to be found numerically. A variety of numerical techniques exist for
solving the differential equations. However, only two of them are frequently used: The
FEM and the spectral method using fast Fourier transform (FFT). The idea of using
this spectral method for the solution of the mechanical boundary value problem was
first introduced by Moulinec et al. (1994, 1998). Limited to periodic BCs, this technique
usually exceeds the FEM in terms of solution quality because it uses trigonometric
polynomials as ansatz functions. Moreover, since it operates in Fourier space, the
use of FFT allows for a very time- and memory-efficient iterative solution algorithm.
Various improvements and extensions were reported in the recent years: Lebensohn
(2001) extended it to the context of crystal viscoplasticity and showed the application
in a number of studies (Lebensohn et al., 2005, 2011; Lee et al., 2011; Lefebvre et al.,
2012). CP-based constitutive laws have been successfully employed by Lebensohn et al.
(2012) Kanjarla et al. (2012), Suquet et al. (2012), and Grennerat et al. (2012).

Simulations of heterogeneous materials, however, are limited by the slow convergence
of the original fixed-point iterative method when it is applied to materials with a
large contrast in the local stiffness (Michel et al., 2001). Several approaches have
been proposed to overcome this limitation. Accelerated schemes have been introduced
by Eyre et al. (1999) and Monchiet et al. (2012) for materials with large property
contrasts. Michel et al. (2001) suggested a method based on augmented Lagrangians

that also works in the case of materials with infinite property contrast. Using the
original formulation and substituting the fixed-point method by advanced solution
methods is another option to improve convergence as shown by Zeman et al. (2010)
and Brisard et al. (2010).

Eisenlohr et al. (2013) proposed a flexible implementation into DAMASK that
is based—in contrast to aforementioned works—on the large strain formulation of
Lahellec et al. (2001). This formulation is presented here, following closely and based
on Eisenlohr et al. (2013) and the extension by Shanthraj et al. (2015).

In the following, two alternative formulations are given in section 2.3.1 followed
by the concrete implementation details in section 2.3.2. For the visualisation the
results obtained by the spectral solver, a reconstruction of a displacement field from a
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deformation gradient field is needed and the used method is presented in section 2.3.3.
This section ends with a comparison to the finite element method and stability
benchmarks.

2.3.1 Formulation
The deformation map χ(x) : x ∈ B0 → y ∈ Bt introduced in section 2.1.1 is expressed
as a sum of a homogeneous deformation, characterised by a constant deformation
gradient F , and a superimposed deformation fluctuation field w̃,

χ(x) = F x + w̃(x), (2.42)

for which periodicity conditions hold, i.e. w̃− = w̃+ on corresponding surfaces ∂B−

and ∂B+.
Equation (2.42) allows writing the deformation gradient F as the sum of a spatially

homogeneous deformation part, F , and a locally fluctuating displacement part, F̃ :

F = F + F̃ . (2.43)

The material response eq. (2.33) is formally written as a relation between the
deformation gradient, F and the first Piola–Kirchhoff stress, P , through a strain
energy density functional, W:

P (x) =
δW

δF (x)
= f(x,F , ξ, ...). (2.44)

Based on eqs. (2.42) to (2.44), two formulations are presented in the following,
namely a direct variational formulation and a mixed variational formulation.

Direct Variational Formulation

The original spectral method by Moulinec et al. (1994) is based on a direct variational
formulation. Since the CP models in DAMASK are written in a large strain framework,
the form of Lahellec et al. (2001) is used in Eisenlohr et al. (2013) and presented here.
In contrast to the work by Moulinec et al. (1994) and Lahellec et al. (2001), here it is
written in a more general form that allows using different numerical solvers instead of
the original fixed-point approach as outlined by Shanthraj et al. (2015)

In this formulation, the equilibrated deformation field is obtained by minimising
W over all deformation fields fulfilling eq. (2.42) for an externally prescribed average
deformation. Static equilibrium expressed in real (see eq. (2.27)) and Fourier

1 space

1 Quantities in real space and Fourier space are distinguished by notation Q(x) and Q(k), respec-
tively, with x the position in real space, k the frequency vector in Fourier space, and i2 = −1.
F−1 [·] denotes the inverse Fourier transform.
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follows as:

min
χ

W =⇒ DivP (x) = F−1 [P (k) ik] = 0, (2.45)

which is equivalent to finding the root of the residual body force field

F [χ(k)] := P (k) ik = 0. (2.46)

The differential eq. (2.46) in Fourier space is numerically difficult to solve because of
its high condition number. Introducing, in the spirit of Eshelby and Mura (1987), a
linear comparison material of stiffness D allows reformulating to an equivalent problem
P (x) = DF (x) = DGradχ with better numerical properties, i.e. a lower condition
number. Equilibrium in this reference material is fulfilled if, for a given deformation
map χ, the residual body force field vanishes

P [χ(k)] := D [χ(k) ⊗ ik] ik = A(k)χ(k) = 0. (2.47)

The acoustic tensor A(k) is a shorthand notation for A(k)a(k) := D [a(k) ⊗ ik] ik
for any given vector field a(k). It corresponds to an operator on a deformation map
producing the body forces resulting in the reference material. The inverse A−1 therefore
gives the deformation map that would result from a known body force field in the
reference material. This deformation map vanishes iff the body force field vanishes, i.e.,
in static equilibrium, since A(k) is non-zero at all considered frequencies (i.e. ∀k �= 0)
and if the stiffness D is—as usually—positive-definite. Next, an operator that results
in the deformation map causing the same body force field in the reference material
as a given deformation map in the original material is defined. This corresponds to a
preconditioning operation of P−1 on the non-linear operator F . P is straightforward
to invert since it is local in k, with P−1 = A(k)−1. The preconditioned system thus
reads:

P−1F [χ(k)] = A(k)−1
P (k) ik = 0 ∀k �= 0. (2.48)

The deformation gradient field corresponding to this deformation map is obtained
from the gradient in real space of eq. (2.48)

P−1F [χ(k)] ⊗ ik =
[
A(k)−1

P (k) ik
]

⊗ ik = 0 ∀k �= 0. (2.49)

This is equivalent to eq. (2.48) except for a constant residual field, i.e. at k = 0 where
the prescribed average deformation gradient is known to hold anyway. Expressed in
terms of the deformation gradient field, eq. (2.49), reads

Fdirect [F (k)] := Γ(k)P (k) = 0 ∀k �= 0, (2.50)

where the Gamma operator Γ(k) is defined as a further shorthand notation to
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Γ(k)T (k) :=
[
A(k)−1

T (k) ik
]

⊗ ik for a tensor field T (k).
The solution given in eq. (2.50) allows violating the compatibility condition eq. (2.19).

Compatibility has to be ensured by using a suitable root-finding algorithm as shown
in section 2.3.2 “Numerical Solution”.

The discretisation of eq. (2.50) results in the so-called basic scheme. Using a
collocation-based approach at the grid points in real space, the resulting system of
equations reads as:

Fbasic [F (x)] := F−1

[{
Γ(k)P (k) if k �= 0

ΔF BC if k = 0

]
, (2.51)

The desired deformation BC F BC of the volume element is conveniently prescribed by
setting ΔF BC = F − F BC. This allows adjusting the deformation gradient such that
a stress BC is fulfilled as shown later in section 2.3.2.

Mixed Variational Formulation

The idea of using a mixed variational formulation was firstly outlined by Michel et al.
(2000) to overcome convergence problems with high phase contrast. Here, this idea is
presented in a general form given by Shanthraj et al. (2015). In contrast to the direct
variational formulation, in the mixed variational formulation the equilibrium deforma-
tion field (i.e. satisfying eq. (2.27)) is obtained by minimising W over all deformation
gradient fields fulfilling eq. (2.42) for an externally prescribed average deformation.
Additionally, contrary to the direct variational formulation the compatibility of the
deformation gradient eq. (2.19) field is imposed as an auxiliary constraint in the mixed
variational formulation.

min
F

W(F ) subject to F = Gradχ. (2.52)

This can be reformulated as an unconstrained optimisation problem by introducing
a Lagrange multiplier field, Λ(x), and a penalty term. Conveniently, the reference
stiffness D as defined for the direct variational formulation is used as the penalty
parameter. The resulting Lagrange multiplier functional reads

L[F ,χ,Λ] = W (2.53)

+
∫
B0

Λ(x) · [Gradχ(x) − F (x)] dx

+
1
2

∫
B0

[Gradχ(x) − F (x)] · D [Gradχ(x) − F (x)] dx.
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The equilibrium condition is equivalent to the saddle point of eq. (2.53) (for details
see Fortin et al., 1983). This results in the following three stationary conditions:

δL
δF (x)

= P (x) − Λ(x) + D

{
F (x) − Gradχ(x)

}
= 0, (2.54a)

δL
δχ(x)

= Div
[
Λ(x) − D

{
F (x) − Gradχ(x)

}]
= 0, (2.54b)

δL
δΛ(x)

= Gradχ(x) − F (x) = 0. (2.54c)

After the application of the Fourier transform, it reads as:

P (k) − Λ0(k) + D

{
F (k) − χ(k) ⊗ ik

}
= 0 (2.55a)

χ(k) = A(k)−1
{
DF (k) − Λ0(k)

}
ik

(2.55b)
χ(k) ⊗ ik − F (k) = 0 (2.55c)

with the Lagrange multiplier field relative to the reference configuration as Λ0(x) =
F (x)Λ(x). Eliminating χ from eqs. (2.55a) and (2.55c) using eq. (2.55b) gives the
equilibrium deformation gradient field as the solution to:

Fmixed [F (k),Λ(k)] :=

⎧⎪⎨
⎪⎩
P (k) − Λ0(k)
+D
(
F (k) − Γ(k)(DF (k) − Λ0(k))

)
F (k) − Γ(k)(DF (k) − Λ0(k))

⎫⎪⎬
⎪⎭ (2.56)

= 0.

The condition F (k) − Γ(k) {DF (k) − Λ0(k)} = 0 in eq. (2.56) is necessary and
sufficient to enforce both the compatibility of the deformation gradient field, given by
F (k) − Γ(k)DF (k) = 0, and equilibrium of the Lagrange multiplier field, given by
Γ(k)Λ0(k) = 0 (for details see Monchiet et al., 2012). The condition P (k)−Λ0(k) = 0
enforces equilibrium of the stress field corresponding to F .

The mixed variational form is used for two collocation-based discretisation approaches
at the grid points in real space: the Lagrange multiplier field-based scheme and the
polarisation field-based scheme, both are outlined in the following.

Lagrange Multiplier Field-Based Scheme The Lagrange multiplier field-based
scheme is based on the discretisation of the mixed variational formulation of the
static equilibrium condition eq. (2.56) in real space. To get a well-conditioned system
of equations, the inverse of the reference stiffness, D

−1, introduced for the direct
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variational formulation, is used to scale the stress terms in eq. (2.56).

FΛ [F (x),FΛ(x)] := (2.57)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
−1(P (x) − Λ0(x))

+β F (x) − F−1

[{
Γ(k) (β DF (k) − αΛ0(k)) if k �= 0

β F BC if k = 0

]

β F (x) − F−1

[{
Γ(k) (β DF (k) − αΛ0(k)) if k �= 0

β F BC if k = 0

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

where the Lagrange multiplier field relative to the reference configuration is deter-
mined through the relation Λ0(x) = F (x)DFΛ(x). The coefficients α and β with
default value α = β = 1.0 enable to weight the conditions for static equilibrium and
strain compatibility. Their optimal choice depends on the problem type, e.g. the ratio
of increased or decreased stiffness compared to the average stiffness. Since the values
of these parameters influence the convergence behaviour, they can be used to improve
convergence rate and stability. A detailed study of the convergence rate is given by
Moulinec et al. (2014) for a similar formulation in a small strain framework.

During the non-linear iterations, the deformation gradient field F (x) is corrected
towards its compatible counterpart F c(x) = β−1Γ(x) ∗ [β DF (x) − αΛ0(x)]. This
allows performing this convolution operation before the constitutive evaluation in
the residual, eq. (2.57). The constitutive evaluation is performed on the compatible
deformation gradient field F c(x) to accelerate convergence.

Polarisation Field-Based Scheme In the polarisation field-based scheme, the mixed
variational formulation of the static equilibrium condition is expressed in terms of the
deformation gradient field and a rescaled polarisation field, Fτ (x) := FΛ(x) + F (x).
Following a similar discretisation procedure as for the Lagrange multiplier field-based
scheme and substituting into eq. (2.56) gives

Fτ [F (x),Fτ (x)] := (2.58)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
−1(P (x) − Λ0(x))

+β F (x) − F−1

[{
Γ(k) (β DF (k) − αΛ0(k)) if k �= 0

β F BC if k = 0

]

β F (x) − F−1

[{
Γ(k) (β DF (k) − αΛ0(k)) if k �= 0

β F BC if k = 0

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The Lagrange multiplier field relative to the reference configuration is determined
from the rescaled polarisation field though the relation Λ0(x) = F (x)D[Fτ (x)−F (x)].
The constitutive evaluation is conveniently performed on the compatible deformation
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gradient field, F c(x) = β−1Γ(x) ∗ [β DF (x) − αF (x)D {Fτ (x) − F (x)}].

2.3.2 Implementation
Here, the important details of the implementation of the direct variational formulation
and mixed variational formulation into DAMASK are briefly outlined. First, the
FFT and its implementation details are presented in “Fast Fourier Transform”.
“Reference Stiffness” outlines the computation of the reference stiffness used for the
various schemes and in “Mixed Boundary Conditions” the handling of stress BCs
is detailed. How the root of the three schemes is found is subject of the following
paragraph “Numerical Solution”. A short summary of the resulting algorithm is giving
in “Algorithm” and this subsection ends with the details of the convergence criteria.

Fast Fourier Transform

The discretisation of the formulation is done using a discrete Fourier transform
(DFT). For that, the hexahedral domain B0 with side lengths dx, dy, dz is discretised
into a regular grid of Nx × Ny × Nz = N points with unit spacing. The solution field
is approximated in the discrete Fourier space associated with this real space grid.
To achieve a reasonable performance, the FFT is used. The term FFT refers to a
group of algorithms that compute the DFT in O(N log N) operations. A free DFT
implementation which has shown an excellent performance is the Fastest Fourier

Transform in the West (Frigo et al., 2014) developed by Frigo et al. (2005). To
further save memory and computation time, the complex conjugate symmetry resulting
from the real space deformation gradient data is exploited.

Reference Stiffness

The choice of the reference stiffness has a strong influence on stability and convergence
rate as shown by Michel et al. (2001). In absence of an analytic expression for the
large strain formulation, similar to Michel et al. (2001), the reference stiffness D is
selected as

D =
1
2

(
arg max

∣∣∣∣
∣∣∣∣dP

dF
(x)
∣∣∣∣
∣∣∣∣
F

+ arg min
∣∣∣∣
∣∣∣∣dP

dF
(x)
∣∣∣∣
∣∣∣∣
F

)
. (2.59)

Mixed Boundary Conditions

For both formulations the direct variational formulation, and the mixed variational
formulation, the BCs are given in terms of the deformation gradient F BC. In order to
allow the (component-wise) prescription of stress BCs PBC, an iterative adjustment1

1 The correction of the deformation gradient field, i.e. the actual spectral method procedure, is
performed in parallel at these iterations.
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of F BC needs to be done until the stress BCs are fulfilled. To do this, conveniently
F BC is expressed in rate form, i.e. F BC = ḞBC Δt for a given time increment of length
Δt. Within Δt the volume element is then subjected to a set of complementary BCs
in terms of deformation rate ḞBC and stress PBC, where stress BCs must not allow
for rigid body rotations. Components of both are mutually exclusive and, when not
defined, set to zero in the following equation. These mixed BCs are translated into
pure deformation BCs at iteration n + 1 by setting

{F BC}n+1 =
{
F
}

n=0 + ḞBC Δt −
{(

∂F

∂P

)}
n

({
P
}

n
− PBC

)
. (2.60)

The last term in eq. (2.60) corrects for deviations from the prescribed stress BCs.
The average compliance ∂F /∂P required for this is estimated with the following
computation procedure:

1. spatially average the tangent modulus ∂P /∂F known at each grid point from
the constitutive model;

2. transform the fourth-order tensor into a 9 × 9 matrix;

3. drop all rows mn and columns kj for which no stress BCs are defined at mn or
kj;

4. invert the reduced square matrix;

5. re-insert zero-filled rows and columns at mn and kj that were dropped before;

6. transform back to a regular fourth-order tensor.

Numerical Solution

The non-linear solution methods to solve the resulting systems of discretised equations
are taken from the portable, extensible toolkit for scientific computation (PETSc)
developed by Balay et al. (2013) and PETSc Team (2015). The residual results from
evaluating eq. (2.51), eq. (2.57), or eq. (2.58) at the grid points. The convolution
operation is performed in the discrete Fourier space associated with the same grid
with the help of the FFT.

In Shanthraj et al. (2015), three solution methods implemented in PETSc are com-
pared: the non-linear Richardson method (Kelley, 1995), the non-linear generalised
minimal residual method (GMRES) method (Oosterlee et al., 2000) and the inexact
Newton-GMRES method (Chen et al., 2006). In these methods, an existing solution
{�}n at iteration n is iteratively improved until the prescribed convergence criteria
are satisfied. Here, the notation {�} is used here as a placeholder that represents
{F (x)} in the basic scheme, {F (x),FΛ(x)} in the Lagrange multiplier field-based
scheme, or {F (x),Fτ (x)} in the polarisation field-based scheme.
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Non-linear Richardson The non-linear Richardson method iteratively improves a
solution {�}n found at iteration n through the update

{�}n+1 = {�}n − F {�}n . (2.61)

When applied to the direct variational formulation, this is equivalent to the approach
presented by Moulinec et al. (1998) in a finite-strain formulation (see Eisenlohr et al.,
2013). Strain compatibility of the deformation gradient field is ensured in this case
because, as for an arbitrary second order tensor field T (x), the convolution with Γ(x)
ensures a compatible solution (Lahellec et al., 2001).

When applied to the set of equations resulting from the Lagrange multiplier field-
based scheme or polarisation field-based scheme, this is the finite-strain formulation of
the polarisation scheme by Monchiet et al. (2012).

Non-linear GMRES In the non-linear GMRES method an updated solution, {�}n+1,
is found as the linear combination of the m previous solutions spanning a Krylov

subspace Kn = span
{{�}n , · · · , {�}n−m+1

}
for which the norm of the linearised

residual is minimal

min
{�}n+1∈Kn

∣∣∣∣
∣∣∣∣ ∂F

∂{�}n

[{�}n+1 − {�}n

]
+ F {�}n

∣∣∣∣
∣∣∣∣
2

. (2.62)

This residual is approximated by PETSc in a Jacobian-free way (Oosterlee et al.,
2000).

Applied to the basic system of equations, compatibility of the deformation gradient
is ensured since each deformation gradient field is a linear combination of compatible
fields.

Inexact Newton-GMRES In Newton methods, an existing solution {�}n is in-
crementally updated to {�}n+1 = {�}n + {Δ�}n with each Newton step given
by

∂F

∂{�}n

{Δ�}n = −F {�}n

⇔
∣∣∣∣
∣∣∣∣ ∂F

∂{�}n

{Δ�}n + F {�}n

∣∣∣∣
∣∣∣∣
2

= 0. (2.63)

To increase the efficiency of such an algorithm, eq. (2.63) is solved only in an inexact
fashion: ∣∣∣∣

∣∣∣∣ ∂F

∂{�}n

{Δ�}n + F {�}n

∣∣∣∣
∣∣∣∣
2

≤ ηn ||F {�}n||2 , (2.64)
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where the tolerance for a vanishing norm of the residual is gradually tightened, i.e.
ηn → 0, with increasing iteration count (Eisenstat et al., 1996).

Within each Newton iteration, the typically large linear system (2.64) is solved
for {Δ�}n by means of the GMRES method where the kth GMRES iterate of the
Newton step is given by

min
{Δ�}k

n∈Kk

∣∣∣∣
∣∣∣∣ ∂F

∂{�}n

{Δ�}k
n + F {�}n

∣∣∣∣
∣∣∣∣
2

(2.65)

where Kk = span
{

∂F

∂{�}n

{Δ�}k−1
n , · · · ,

∂F

∂{�}n

{Δ�}k−m
n

}

and K0 = span {−F {�}n}. Since the discretisation of the Jacobian is dense and
numerically difficult to handle, a finite difference approximation

∂F

∂{�}n

{Δ�}k
n ≈

F
[
{�}n + ε {Δ�}k

n

]
− F {�}n

ε
(2.66)

is used to update the Krylov subspace Kk.
Compatibility of the deformation gradient field is preserved when this method is

applied to the basic system of equations for a compatible Newton step. This follows
from eq. (2.65) and the observation that Kk is spanned by compatible fields since
∂Fbasic

∂x = Γ(x) ∗ ∂P
∂F (x).

Algorithm

For a given time step, the solution is found iteratively. The iterative scheme, here
shown for the direct variational formulation, consists of the following steps:

1. evaluate the constitutive response at all points (including tangent)

2. determine correction to deformation gradient BCs to fulfil stress BCs

3. FFT of stress field

4. correct average deformation gradient to fulfil stress BCs

5. determine correction to deformation gradient field to fulfil mechanical equilibrium

6. inverse FFT of deformation field

7. correct deformation gradient field.

The volume element has to satisfy static equilibrium and—when using the mixed
variational formulation—strain compatibility, and the stress BCs must be fulfilled
before the iterative scheme is stopped.
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Convergence Criteria

A solution is accepted if the stress field is equilibrated, the deformation gradient field
is compatible and both of them follow the prescribed macroscopic BCs.

To ensure the resulting stress field is in equilibrium, the root mean square (RMS)
value of the divergence of the stress field is reduced below a prescribed tolerance. The
corresponding equilibrium criterion reads:

max
(
εeq,rel

∣∣∣∣P ∣∣∣∣max , εeq,abs
)
/m ≥ RMS

(
||DivP (x)||2

)

=

√√√√ N∑
j=1

||P (kj) ikj ||22
/ N2,

(2.67)

where εeq,rel and εeq,abs are the relative and absolute equilibrium tolerances.
Similarly, for discretisations of the mixed variational formulation the RMS value

of the curl of the deformation gradient field is reduced below a prescribed tolerance.
The following compatibility criterion ensures the deformation gradient field of the
Lagrange multiplier field-based scheme and the polarisation field-based scheme is
compatible:

max
(
εcomp,rel

∣∣∣∣F − I
∣∣∣∣

max , εcomp,abs
)
/m ≥ RMS

(
||CurlF (x)||F

)

=

√√√√ N∑
j=1

||F (kj) × ikj ||F2
/ N2,

(2.68)

where εcomp,rel and εcomp,abs are the relative and absolute compatibility tolerances.
The fulfilment of complementary macroscopic deformation gradient and stress BCs

is determined by

max
(
εBC,rel

∣∣∣∣P ∣∣∣∣max , εBC,abs
) ≥ ||ΔPBC||max

where ΔPBCij =

{
Aijkl

(
FBC − F

)
kl

if FBCij prescribed(
PBC − P

)
ij

if PBCij prescribed
(2.69)

and εBC,rel and εBC,abs are the relative and absolute BC tolerances.
The default tolerance values are εeq,rel = 5.0 × 10−4, εeq,abs = 1.0 × 10−10 Pa,

εcomp,rel = 5.0 × 10−4, εcomp,abs = 1.0 × 10−10, εBC,rel = 1.0 × 10−2, εBC,abs =
1.0 × 103 Pa. Unless otherwise specified, these values are used for the simulations
presented in this work.
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Equilibrium and compatibility in Fourier space

In eq. (2.67) and eq. (2.68), norms of static equilibrium (see eq. (2.27)) and
strain compatibility (see eq. (2.19)) are computed in Fourier space. Using
the differentiation property F [df(x)/dx] = i2πkf(k), this is done in a compu-
tationally efficient way by combining the different spatial derivatives for curl
and divergence according to their definition. Moreover, the RMS as a volume
average is easily accessible as discussed in Eisenlohr et al. (2013) in Fourier

space.

2.3.3 Reconstruction of a Displacement Field from a Deformation Gradient
Field

In the presented large strain framework, the displacement field—i.e. the vector field
that maps each computation point from the reference into the deformed configuration
(see section 2.1.1)—is not known. Therefore, it must be calculated in a post processing
step for spatially resolved visualisation. For the data presented in this thesis this is
done with a method proposed by Eisenlohr et al. (2013) that is briefly recapitulated
here.

The proposed shape reconstruction algorithm is suitable to reconstruct the geometry
of volume elements (VEs) with periodic BC and known deformation gradient field
on a regular, three dimensional grid in undeformed configuration. Starting from the
separation of the deformation gradient in average and fluctuating part (eq. (2.43)),
the fluctuation in the displacement field can be recovered as

F̃ (x) = w̃(x) ⊗ ∇
F̃ (k) = w̃(k) ⊗ ik

F̃ (k)ik = w̃(k) (ik · ik)

−F̃ (k)
ik

|k|2 = w̃(k) ∀k �= 0. (2.70)

Since the fluctuation, F̃ , of the deformation gradient has by definition a vanishing
average, the exclusion of the zero-frequency vector k = 0 in eq. (2.70) to prevent
a division by zero is inconsequential. When inserting the result of eq. (2.70) into
eq. (2.42) the overall deformation map can be assembled as

y(x) = F x − F−1
(
F̃ (k)

ik

|k|2
)

, (2.71)

i.e., integrating the locally fluctuating part of the deformation gradient in Fourier

space and the average part in real space. A beneficial side effect of this splitting is the
possibility of independently re-scale the displacement fluctuation in the visualisation.

From eq. (2.71) the coordinates of the deformed grid are recovered. For a subsequent
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visualisation hexahedral cells are constructed around these grid points. Each node
of a cell is positioned at the average location of all eight surrounding grid points,
accounting for periodicity.

For an evaluation of the reconstruction accuracy, benchmark results are presented
by Eisenlohr et al. (2013).

2.3.4 Comparison to the Finite Element Method and Stability Benchmarks
To show the advantages of the spectral method, here results obtained by the basic
variant of the spectral solver are compared to results obtained with a commercial FEM
solver. Furthermore, the different spectral solver variants—i.e. the direct variational
formulation, the Lagrange multiplier field-based scheme, and the polarisation field-
based scheme—are benchmarked to each other in terms of stability. The examples
nicely show, which detailed insights into polycrystal mechanics are enabled by high-
resolution CP simulations. The geometries used for the simulations shown in this
section are presented in fig. 2.3. In total, three geometries are used: a synthetic
polycrystal consisting of 50 grains generated by a Voronoi tessellation, an elastic
plate with a circular inclusion and a plastic plate with a circular inclusion divided into
its quadrants.

Comparison to the Finite Element Method

As pointed out by Eisenlohr et al. (2013), DAMASK allows a comparison of different
BVP solvers using exactly the same material point model. For the comparison of the

(a) Periodic Voronoi tes-
sellation of 50 randomly
placed seeds at grid reso-
lution of 643. Each color
represents one randomly
chosen crystal orientation.

(b) Two-dimensional elas-
tic plate with central cir-
cular inclusion. Arrows
indicate horizontal exten-
sion direction.

isotropic

1 0 0 1 1 1

1 1 0

0° 0° 0° 54.7° 45° 0°

45° 0° 0°

(c) Plastic plate with cir-
cular inclusion. Orienta-
tions are sketched as unit
cells and given as crystallo-
graphic loading directions
and Euler angles. Load-
ing in uniaxial tension
along horizontal arrows.

Figure 2.3: Geometries used to discuss the performance of the spectral solver.
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original basic scheme formulation (i.e. equivalent to the direct variational formulation
using the non-linear Richardson solver) of the spectral method and the commercial
FEM solver MSC.Marc in version 2010, the 3D microstructure shown in fig. 2.3a
was deformed in pure shear in 2 − 3-direction up to approximately 0.2. In the FEM
model, a periodic displacement field is enforced by linking the degrees of freedom for
matching nodes on opposite faces. The material parameters of the phenomenological
material model are chosen to represent copper. Different tolerance criteria are set for
both solvers and the tessellated structure was resolved with a 163, a 323, and a 643

grid for both solvers and additionally at 1283 and 2563 points for the spectral solver.
For more details about material parameters, numerical settings, and loading conditions
see Eisenlohr et al. (2013).

First, the macroscopic response, i.e. the stress–strain curve in loading direction
is compared and discussed. From fig. 2.4 it can be seen that the FEM solutions
(shown in red) show a much higher mesh dependence than the solutions obtained

F
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P
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meth
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323–2563

Figure 2.4: Stress–strain response of the poly-
crystal example shown in in fig. 2.3a.

by the spectral method (shown in
blue). In this figure, for both so-
lution methods, mesh/grid resolu-
tion increases from light to dark and
convergence tolerance decreases from
dotted to dashed to solid line. Com-
paring the mesh dependence shows
that essentially, the spectral method
converges already at a grid of 323,
while for the FEM no mesh conver-
gence is observed for the examined
meshes, where computation limits
made higher mesh resolution infea-
sible. This example shows that the
exponential convergence of the spec-
tral method makes it attractive for
the determination of average values, as at a low resolution—at least for single phase
materials—the solution is already grid-converged. However, a more pronounced depen-
dence on the convergence criterion is seen for the spectral method while the FEM is
only slightly influenced (see inset in fig. 2.4).

Next, in fig. 2.5, the von Mises equivalent strain (εvM ) and stress (σvM ) at the
final applied shear strain along the (0, 0, 0) − (1, 1, 1) diagonal of the grain aggregate is
shown. The profiles resulting at different mesh/grid resolutions exhibit similar trends
as already observed for the volume averaged mechanical response. Considering the
equivalent strain the FEM results gradually approach, at increasing mesh resolution,
the profile to which the spectral method appears to have converged already at a grid
resolution of 643 for the local response. The strain profiles predicted by FEM are
comparably smooth, while the spectral method solutions show considerably higher
variability in grains and at grain boundaries. Relatively large amplitudes of high-
frequency strain oscillations are found in the spectral solutions, particularly at some
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Figure 2.5: Equivalent strain and stress along a diagonal through the polycrystal
example at approximately 0.2 shear strain.

grain boundaries. At most of the grain boundaries crossed by this particular diagonal,
the converged spectral results reveal significant and sudden jumps in equivalent stress.
This feature is also suggested by extrapolating the evolution of FEM profiles with
mesh resolution, despite them not reaching the high fidelity of the spectral profiles
that are obtainable with help of the trigonometric polynomials.

Finally, the stress field mapped onto the deformed configuration is shown in fig. 2.6.
The trends that the spectral method converges faster with increasing resolution and
shows a higher fidelity in the solution field already observed in figs. 2.4 and 2.5 can
be confirmed by comparing the local response. With respect to the further use of the
spectral method, i.e. the potential use of high-resolution CP simulations, the solution
of the VE discretised at 2563 points (lower right corner in fig. 2.6) is very promising.
It can be obtained in roughly one week of computation time and shows highly resolved
stress gradients inside single grains.

Comparison of Spectral Solver Variants

To benchmark the different variants of the spectral solver, the well-known Kirsch’s
plate (as shown in fig. 2.3b) was used. A square plate with unit dimensions containing
a circular inclusion of area fraction 1.3 % is discretised into 2048 × 2048 grid points
(fig. 2.3b). An isotropic elastic material model is used to describe the plate and the
inclusion. The inclusion stiffness is scaled by factors in the range of 10−8 to 104 relative
to the plate stiffness and the plate is strained to 0.01 strain in horizontal direction.
The solution, i.e. the Cauchy stress in horizontal loading direction, obtained at 10−4

(void) and 103 (rigid) using the basic variational scheme and the non-linear GMRES
solver is shown in fig. 2.7.



2.3 Spectral Solver 31

0.0 0.1 GPa

643

323

163

643

323

163

1283

2563

Figure 2.6: Piola–Kirchhoff stress at a shear strain of approximately 0.2 mapped
onto the deformed configuration of the polycrystal example for FEM (red frame) and
the spectral solver (blue frame) at all calculated resolutions.
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0.8 2 GPa

(a) Rigid inclusion.

0.2 3 GPa

(b) Void inclusion.

Figure 2.7: Cauchy stress in horizontal loading direction mapped on the elastic
inclusion problem (fig. 2.3b) at the final strain of 0.01.

Figure 2.8 presents the number of residual evaluations required by the various
spectral methods to solve for the applied uniaxial tensile deformation. An increase in
the computational cost in relation to an increasing stiffness contrast of the inclusion is
generally observed.

The least favorable convergence and stability is exhibited by the non-linear Richard-

son method (fig. 2.8 top). In combination with the basic and the Lagrange multiplier
field-based scheme, convergence within the specified iteration limit is only found for
stiffness contrasts in the range 10−1,...,2. For the polarisation field-based scheme a wider
stiffness contrast range 10−8,...,3 of convergence is seen. Consistent with the results of
Monchiet et al. (2012), the polarisation field-based scheme results in an accelerated
convergence compared to the basic scheme. Contrary to the results reported by Michel
et al. (2001), the Lagrange multiplier field-based scheme exhibits worse convergence
behaviour than the basic scheme.

Improved stability is achieved by using the inexact Newton-GMRES method
(fig. 2.8 center). Here, the basic schemes converge over the entire range of stiffness
contrasts and the mixed variational methods in the range 10−4,...,3.

The non-linear GMRES method exhibits the most favorable convergence and stability
properties (fig. 2.8 bottom). All schemes require a roughly similar number of residual
evaluations for given stiffness contrast. However, with decreasing stiffness contrast
of the void inclusion the performance of theLagrange multiplier field-based scheme
gradually worsens up to a factor of about 10 relative to the other three schemes.

For all schemes that converged within the prescribed iteration limit for the case of a
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Figure 2.8: Number of residual evaluations required to solve the elastic inclusion
problem as a function of stiffness contrast.

void inclusion (left side of fig. 2.8) a saturation in the number of residual evaluations
with increasing contrast is observed—indicating the existence of a finite bound for the
zero-stiffness case. This is in contrast to the unbounded behaviour of the conventional
fixed-point solution schemes as discussed in Michel et al. (2001). Furthermore, for rigid
inclusions (right side of fig. 2.8), the computational cost of the non-linear GMRES and
inexact Newton-GMRES grows only with an exponent of about 0.5 with increasing
stiffness contrast compared to an exponent of close to 1.0 seen for the non-linear
Richardson method. While the inexact Newton-GMRES method results in a
larger number of residual evaluations, the error is reduced super-linearly per iteration
compared to the non-linear GMRES and non-linear Richardson which exhibit linear
convergence rates (Kelley, 1995).
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Figure 2.9: Logarithmic strain in horizontal loading direction shown along the hori-
zontal center for the elastic inclusion problem.

The approximation of the solution with trigonometric polynomials raises the prob-
lem of Gibbs phenomenon. Gibbs phenomenon is the name given to the fact that
approximation by Fourier series “overshoots” at steep gradients. This is exemplarily
shown on the results of the elastic plate, like in fig. 2.7 for a phase contrast of 10−4

(void) and 103 (rigid). The horizontal strain profile along the middle of the plate in
fig. 2.9 clearly shows oscillations in the vicinity of the jump in stiffness. However,
since the property contrasts for simulation set-ups closer to reality are much lower,
this issue is not further examined yet. Still, for the planned incorporation of damage
mechanics into DAMASK, it has to be addressed to avoid damage related softening
due to numerical artefacts at grain or phase boundaries.
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100 270 MPa

(a) Equivalent stress σvM.

0 0.4

(b) Equivalent strain εvM.

0 20°

(c) Rotation angle between
initial and current grain ori-
entation.

Figure 2.10: Field quantities at a strain of 0.2 in horizontal loading direction
mapped onto the deformed configuration of the simplified polycrystal with void (top)
and with rigid (bottom) inclusion (stiffness contrast 0.01 and 100).

As a last example, a square plate with unit dimensions containing a circular inclusion
of area fraction 1.3 % divided into four quadrants as shown in fig. 2.3c and discretised
into 1024 × 1024 grid points is presented here. The fcc-materials in three quadrants
have distinct orientations and are described by a phenomenological crystal plasticity
model, while the remaining lower left quadrant is described by the isotropic material
model commensurate with the behaviour a non-textured polycrystal composed of
these distinct crystalline orientations. As reported by Shanthraj et al. (2015), the
non-linearities introduced by the far more complex material behaviour compared to
the simulation of the elastic plate, decrease stability and convergence rate. Instead
of discussing the limits of the spectral solver variants in detail here, some of the field
quantities obtained by the simulation at a strain of 0.2 are shown in fig. 2.10. Even a
quick visual inspection shows how complex strain and stress distribution develops in
the presence of various complex materials and it becomes obvious that high-resolution
is necessary to capture the evolving gradients.





3 Simulations
The various aspects of the simulations conducted in this study are presented here.
Each series of simulations aims at a specific question which can be answered with
the help of high-resolution crystal plasticity (CP) simulations. Hence, first the reason
for performing the simulations is given. The outline of the aims is followed by a
summary of the model details, e.g. used constitutive model, input parameters, and
microstructure details. Finally, the conclusions that can be drawn from the results are
presented.

The studies are categorised into the following two modelling approaches,

1. section 3.1 “Real Microstructures”

2. section 3.2 “Artificial Microstructures”,

with both of them having their specific advantages and drawbacks.
Using microstructure models based on real microstructures is a widely used approach

(Karlsson et al., 1974; Maresca et al., 2014; Raabe et al., 2001; Reuber et al., 2014) that
enables a direct comparison to experimental results and allows studying the full variety
of experimentally observable microstructural features present in real materials. The
spectral method based solver allows a direct takeover of the experimentally obtained
data on regular grids, i.e. from pixel (2D) or voxel (3D) based datasets into the
simulation set-up The high authenticity of the model is a huge advantage of using real
microstructures. Differences of the model geometry to the experimentally observed
microstructure are only caused by experimental limitations. However, obtaining
spatially fine resolved data is extremely challenging, especially when dealing with 3D
microstructures. Moreover, there are two additional major drawbacks associated with
the use of real microstructures: First, resolving all measured microstructural features
requires a high resolution associated with high computational costs. This leads to
the situation that simulations of real microstructures—including all details—are often
done on microstructural parts that are not large enough to be representative for the
material, and, hence, the average behaviour cannot be deducted from these simulations.
As outlined before, the performant spectral solver used in conjunction with plain
material models can tackle also this second challenge as it enables the use of large,
but still highly resolved microstructures. Second, using existing microstructures as the
basis for simulations limits the microstructural parameters space to materials that can
already be produced. Hence, thought experiments are limited to changing constitutive
parameters and boundary conditions on models that are created from experimental
data.

37
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To overcome the limitations associated with the use of real microstructures, artificial
microstructures can be created. Having full control over the microstructure parameters
used allows investigating easily the influence of isolated features. As an additional
advantage, the parameter space is not limited to existing microstructures. Grain shape
and size distribution can be chosen from a range that is only depending on the available
tools for the microstructure generation. The models are usually much simpler than
realistic microstructures and capture only some dominant geometrical features, where
the incorporated details depend on the aim of the study. Actually, often microstructures
are designed in an idealised way to avoid the variety of microstructural features and
heterogeneities in real microstructures. This especially holds when only the average
response of a material under investigation is of interest and a structure representative
for the material called a representative volume element (RVE) is used. Still, it must
be ensured that the same response—with respect to selected parameters—as for the
real material is obtained. Usually, periodic boundary conditions (BCs) are enforced in
all directions on the RVE expanding the volume to infinity and avoid that boundaries
influence the behaviour. As outlined in section 2.3, periodic BCs are inherent to the
employed solution technique.

3.1 Real Microstructures
In the two studies on “Strain and Stress Partitioning in Dual Phase Steel” and
“Strain Localisation in Magnesium” presented in this thesis, the experimental data
used as the model input is obtained using electronic backscatter diffraction (EBSD)
measurements. EBSD is a surface measurement technique, and obtaining a 3D dataset
is only possible by a destructive serial sectioning approach. Since a close coupling
between experimental results and simulations is required in the context of the conducted
studies, the destruction of the undeformed microstructures must be avoided. Therefore,
pre-mortem measurements are conducted only on the surface, which especially means
that 2D simulations are conducted. The implications of this approach are in detail
discussed in “Strain and Stress Partitioning in Dual Phase Steel”, but equally hold
for “Strain Localisation in Magnesium”. As shown later, the strong coupling between
experiments and simulations allows for a deeper understanding of the microstructure
physics and is preferred over a more realistic 3D simulation with missing experimental
results for validation.

3.1.1 Strain and Stress Partitioning in Dual Phase Steel
Dual phase (DP) steels consists mainly of two phases, a softer ferritic matrix with hard
martensitic inclusions for simultaneous improvement of strength and ductility. They
find a wide field of applications due to their excellent mechanical properties (Tasan
et al., 2015). Despite the successful application of DP steels and a large number of
works on modelling the mechanical behaviour of DP steels, a full understanding of the
local stress and strain partitioning that is responsible for the mechanical properties, is
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still not achieved.
The high degree of interest on DP micro-mechanical simulations is coming from (i)

the demand coming from industrial application, and (ii) the fact that the challenges
in modelling DP steels—stemming from the high phase contrast and the crystalline
nature of both phases—render DP steels a perfect benchmark in modelling complex
materials regarding simulation stability, prediction quality, etc. Current, CP based
simulation techniques enable to investigate strain and stress partitioning effects at
the micro-scale (Chen et al., 2014; Ghassemi-Armaki et al., 2014; Ramazani et al.,
2014) with the target to improve DP microstructures with respect to specific properties
like higher yield strength or improved ductility for given minimum yield strength.
The presented work is—in line with these recent simulation approaches—aiming at a
strong coupling between experiment and simulation. More results related to micro-
mechanical simulations of DP steels are given in Tasan et al. (2014a,b) which provide
the basis for the work—especially the experimental characterisation and the joint
numerical-experimental investigation—presented here.

Purpose of the first series of simulations is the quantification of the size needed of
a microstructural patch to be representative. Determination of the minimum RVE
size is of great importance to limit the computational costs when predicting average
quantities, e.g. in the determination of yield surfaces. A closer look on the local stress
and strain partitioning is the focus of the second simulation study. The comparison to
experimental data obtained by in-situ experiments performed at the microstructure
used for the simulation allows analysing sub-surface effects, the main drawback of
using 2D microstructures. A sensitivity study on the martensite properties helps to
quantify the effect of martensite yield strength in alloy design.

Experimental Preparation and Characterisation

The DP steel used in this study was provided by Tata Steel (IJmuiden, Netherlands).
Two different grades where used, one having an initial yield strength of 600 MPa
(subsequently called DP600) and one of 800 MPa (subsequently called DP800). However,
to get a coarser microstructure, both samples were subjected to a second laboratory-
scale heat-treatment cycle following spark erosion to cut microstructure samples.
Specimen surfaces are polished with colloidal SiO2 particles ranging from 0.01 μm to
0.05 μm in size, followed by a conventional metallographic grinding, diamond-polishing,
and etching procedure.

For studying the effect of the microstructure patch size on the average response,
an EBSD scan of 1618 × 1155 points with a step size of 0.087 μm was conducted on
the DP600 material shown in fig. 3.2. The EBSD measurements are carried out using
a Zeiss-Crossbeam XB 1540 focused ion beam (FIB)-scanning electron microscopy
(SEM) instrument (Oberkochen, Germany). Each computation point is assigned an
initial crystallographic orientation and a phase (i.e. martensite or ferrite, based on the
grain average image quality (IQ), see fig. 3.1).

For the coupled experimental–numerical approach, preliminary large field-of-view
EBSD measurements are conducted to identify region of interests (ROIs) in the DP800
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(a) EBSD-based IQ map. (b) Grain average IQ. (c) Phase distribution from
grain average IQ.

Figure 3.1: Generation of a DP microstructure model from the EBSD-based IQ map.
Darker areas represent worse IQ and indicate martensite.
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Figure 3.2: EBSD based orientation and IQ map (darker areas indicate lower IQ) of
the DP600 microstructure. The dashed line indicates an area of 1024 × 1024 pixel of
the full 1618 × 1155 pixel microstructure map.

microstructure that enable an investigation of the influence of different microstructural
features on strain partitioning (fig. 3.3a). Out of these, tensile samples with gauge
dimensions of 4 mm × 2 mm × 1 mm are produced by spark erosion. The EBSD data
obtained on the investigated microstructural areas (fig. 3.3a) is set as the starting point
for the CP simulations using the same SEM instrument and the same technique as for
the DP600. Prior to the deformation experiments, a single layer of 0.015 ± 0.005μm
SiO2 particles is homogeneously distributed on the sample surfaces for follow-up
local strain field measurements. Using a Kammrath & Weiss GmbH (Dortmund,
Germany) stage, the tensile sample is deformed in uniaxial tension to increasing levels
of strain. At each deformation level, ROIs are imaged using different detectors in
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SEM (i.e. secondary electron (SE), backscatter electron (BSE), inlens SE, EBSD). For
optimal image correlation conditions and microstructure imaging, low-voltage imaging
conditions are employed to get a small interaction volume. The images captured by
the inlens SE detector are used for the microscopic digital image correlation (μDIC)
analysis using the Aramis software (Gom GmbH, Braunschweig, Germany). Imaging
of the surface topography is done by SE detector and the underlying microstructure
is analysed by BSE imaging. As shown in fig. 3.3, the single layer pattern of SiO2
particles offers two evident advantages: On the one hand, it does not obstruct SE and
BSE imaging as demonstrated in fig. 3.3b, thus allowing microstructure and surface
imaging without any interference from the overlaying pattern. On the other hand,
the SiO2 pattern can be selectively imaged for follow-up μDIC at high resolution
without any disturbance by the underlying microstructure (thus avoiding effects of
surface roughening and/or changing electron channelling conditions) by inlens SE
imaging as shown in fig. 3.3c. Following the deformation experiments, a colloidal SiO2
polishing based serial sectioning procedure is carried out to reveal the 3D microstructure
underneath the observed surface layer.

Digital Image Correlation

Digital image correlation techniques are used to track changes in images. For
images captured with an (electron) microscope, the approach is termed “micro-
scopic digital image correlation” (μDIC) Commonly, digital image correlation
(DIC) relies on the maximisation of a correlation coefficient for each pixel of two
subsequently taken images. This allows deriving the (2D) strain fields at the
surface during deformation of a microstructure. Different approaches (e.g. place
markers or etch the microstructure) exist to increase uniqueness and contrast
to enable an improved correlation finding, however they usually either affect
the microstructure integrity or limit the view on the surface. The approach by
Yan et al. (2015) used here has neither of these disadvantages, as the pattern
on top of the microstructure is only visible in the inlens SE detector while it is
“invisible” in the other imaging modes.

Modelling Details

The phenomenological material model is used to model both phases, ferrite and
martensite. However—despite the term “dual phase”—some retained austenite (face-
centered cubic (fcc) phase of steel) is often found in the microstructures (Tasan
et al., 2015). Since it is known from experimental observations that the austenite
transforms to martensite at early deformation states in the considered material and
phase transformation is not (yet) included in Düsseldorf advanced material simulation
kit (DAMASK), austenitic grains are treated as martensite.
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(a) EBSD-based IQ map
that shows the ROI’s loca-
tions with high-resolution
IPF overlays. The ROI
with the solid white border
is discussed in detail.

(b) BSE/SE microstructure images at the undeformed state
(left) and at ε̄x = 0.08 strain in horizontal loading direction
(right).

(c) Inlens SE microstructure images at undeformed state
(left) and at ε̄x = 0.08 strain in horizontal loading direction
(right). High magnification insets show that microstructure-
free pattern images are obtained by the inlens detector.

Figure 3.3: Methodology of ROI selection and microstructure imaging during the
deformation experiments on the DP800. Note that all images in figs. 3.3b and 3.3c are
of exactly the same ROI, underlining the strength of the developed selective pattern
imaging methodology.
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rite for the DP600 simula-
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For the statistical analysis performed on the DP600
microstructure, two simulations have been performed:
One on a 10242 sized subset of the patch shown in fig. 3.2
that allows simple down sampling by factors of two, and
one on the whole microstructure (having a resolution
of 1618 × 1155 pixel). Since the exact constitutive
behaviour is of minor importance, the crystal structure
is assumed to be body-centered cubic (bcc) with 12 slip
systems of the 〈1 1 1〉{1 1 0} family for martensite and
ferrite and CP data obtained from stress–strain curves
of a similar material is used. The stress–strain curves
of both phases resulting from uniaxial compression are
shown in fig. 3.4. Both samples are deformed in uniaxial
tension (along the horizontal direction in figs. 3.6 and 3.7)
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at a rate of 6.0 × 10−4 s−1.
For the coupled experimental–numerical study, the same strain rate as in the

experiment, namely, 6.0 × 10−4 s−1 is applied to microstructural patches under tensile-
strain for 170 s, i.e. until a final average strain of approximately ε̄x = 0.08 is reached.
The out-of-plane direction of the 2D model is set to be stress-free on average to
reflect the experimental situation of a free surface. As it is characteristic for the
spectral method, the microstructure is periodically repeated in all three directions,
i.e. the prescribed BCs are volume/area averages. It will be shown later that the
strain heterogeneity is influenced mainly by the immediate neighbourhood of a given
microstructural area, suggesting that the influence due to the artificial periodicity
introduced by the boundary description is confined to a narrow zone (Tasan et al.,
2014b). Nevertheless, to minimize this deviation further the simulated microstructural
areas are kept larger than those tracked experimentally. The errors introduced through
the mentioned uncertainties in phase determination and through the setting of phase
properties are critically discussed in section 3.1.1.

Parameter Identification for the Coupled Experimental–Numerical Study Additional
authenticity is introduced into the model by extracting the phase properties directly
from the microstructure (see figs. 3.5a to 3.5c). This is done with the help of an inverse
CP finite element method (FEM) simulation procedure which was originally developed
for and applied to hexagonal materials (Yang et al., 2011; Zambaldi et al., 2010, 2012).
It is here applied to the case of bcc crystal structure of ferrite. This approach to
identify the mechanical behaviour of the ferrite matrix phase involves optimisation of
initial and final resolved shear stress on the 〈1 1 1〉{1 1 0} and 〈1 1 1〉{1 1 2} slip system
families1 in four differently oriented grains (fig. 3.5b) to correctly predict the pile-up
topography resulting from nano indentation experiments (fig. 3.5a). To achieve this,
load-controlled indentation experiments (fmax = 4.0 mN) are performed using a sphero-
conical diamond tip with a nominal tip radius of 1.0 μm and a nominal cone angle of
90° on the same undeformed DP microstructure (away from the ROIs). From the array
of indents, those in the center of differently oriented, large ferrite grains are selected
(shown as highlighted grains in fig. 3.5a). Thus, grain boundary effects on indentation
measurements, and surface relief effects on follow-up atomic force microscopy (AFM)
measurements are both minimised. The pile-up topography in the vicinity of the
indents (10 μm × 10 μm) are measured using tapping mode AFM measurements with
a scan rate of 0.25 Hz and a tip velocity of 5 μm s−1. Finally, using a Nelder-Mead

type non-linear optimisation algorithm, the initial and saturation shear strength values
for the two slip system families are identified. The objective function is based on
differences in pile-up topographies (fig. 3.5b) and the load–displacement curves. The
identified set of parameters is given in table 3.2a and shown in comparison to the

1 For coupled experimental–numerical study, 〈1 1 1〉{1 1 2} systems have been additionally introduced.
The parameter identification procedure should predict high resistances for them if they are not
needed to reproduce the experimental results.
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(a) Location of all indents
in the selected microstruc-
ture. IPF parallel to nor-
mal direction shown in in-
set.

(b) AFM measured pile-up
topography of the indents
(left) and simulated to-
pographies (right).
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Figure 3.5: Ferrite phase properties extraction from nano indentation experiments:
Grid of indents in DP microstructure fig. 3.5a, pile-up topography fig. 3.5b and simu-
lated stress–strain curves fig. 3.5c.

martensite stress–strain curves in fig. 3.5c. Using the DAMASK framework allows
using for both, the simulation of the DP microstructure with the fast and efficient
spectral solver, as well as for the parameter identification—where complex geometries
not accessible to the spectral solver are required—with the commercial FEM solver
MSC.Marc, exactly the same material point model.

As shown in fig. 3.5b for the four chosen grains, the final CPFEM predicted pile-up
patterns are in good agreement with the AFM based experimental measurements. This
indicates that the hardening behaviour is correctly described by the determined set of
parameters. However, as the approach described in Zambaldi et al. (2012) does not
strongly penalize deviations from the load–displacement curve, the force is underes-
timated by the simulation and reaches only values of approximately fmax = 2.5 mN
instead of the experimentally determined fmax = 4.0 mN (for the same indentation
depth).

The same procedure is not applicable to the martensitic phase, as the dimensions
of the martensitic laths are of similar size as the nano indents. Therefore, for the
martensite, constitutive parameters are fitted to the macroscopic behaviour, i.e.
polycrystal stress–strain curves, of a similar martensitic material. To strengthen the
correlation with the martensite found in the considered DP steel, the initial flow stress
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ratio between ferrite and martensite (identified from the nano indentation experiments)
is considered. This ratio is used as the basis to scale the initial and final shear
resistance on each slip system family in the martensite. The resulting parameters
are given in table 3.2b. Additionally, the sensitivity of the simulation results on the
martensitic phase properties is studied with the aid of follow-up simulations using
modified mechanical contrast between ferrite and martensite. For that, martensite
variations are introduced by ±25 % scaling of the initial and final shear stress on
each slip system family. Also, the influence of martensite anisotropy is investigated
by comparing the results of anisotropic CP simulations to results obtained using the
isotropic material model for the martensite. The stress–strain curves in uniaxial tension
for the various martensite parameters are shown in fig. 3.5c in comparison to the
response of the ferrite.

Table 3.1: Material parameters for DP800. Based on Tjahjanto et al. (2008) and
fitted for the simulation of DP steel presented in Roters et al. (2012).

(a) Ferrite, initial and saturation slip
resistance determined using inverse simu-
lation procedure.

Property Value Unit

C11 233.3 × 109 Pa
C12 235.5 × 109 Pa
C44 128.0 × 109 Pa
γ̇0 1.0 × 10−3 m s−1

ξ0,{1 1 0} 95.0 × 106 Pa
ξ∞,{1 1 0} 222.0 × 106 Pa
ξ0,{1 1 2} 96.0 × 106 Pa
ξ∞,{1 1 2} 412.0 × 106 Pa
h0,slipslip 1.0 × 109 Pa
hαβ 1.0
n 20.0
a 2.25

(b) Martensite, initial and saturation
slip resistance fitted to stress–strain
curve and hardness ratio.

Property Value Unit

C11 417.4 × 109 Pa
C12 242.4 × 109 Pa
C44 211.1 × 109 Pa
γ̇0 1.0 × 10−3 m s−1

ξ0,{1 1 0} 406.0 × 106 Pa
ξ∞,{1 1 0} 873.0 × 106 Pa
ξ0,{1 1 2} 457.0 × 106 Pa
ξ∞,{1 1 2} 971.0 × 106 Pa
h0,slipslip 563.0 × 109 Pa
hαβ 1.0
n 20.0
a 2.25

Results and Discussion

In the following, the results of the simulations are presented and discussed. First,
the results of the solely simulation-based study on the effects of the microstructure
patch size on the average response are given. Second, the results of the coupled
experimental–numerical approach are depicted.

Statistical Analysis of Stress and Strain Partitioning The distribution of the equivalent
stress shown in fig. 3.6a confirms the expected inhomogeneous stress partitioning in DP
steels. While the martensite regions can bear a stress much higher than the average
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0.0 866.0 MPa

(a) 10242. (b) 10242 ⇒ 2562. (c) 10242 ⇒ 642.

(d) 10242 ⇒ 162. (e) 10242 ⇒ 42. (f) 10242 ⇒ 22.

Figure 3.6: Equivalent stress at 1.5 % strain in horizontal loading direction averaged
over differently sized square regions of a 10242 pixel microstructure shown in fig. 3.2.
Central color represents average of the whole patch.

of the whole microstructure, stress in most of the ferritic grains is below the average.
Additionally, a dependence of the stress distribution on crystallographic orientation in
ferritic grains can be seen. However, the inhomogeneous stress distribution caused by
martensitic grains at the phase boundaries usually penetrates into the center of the
ferritic grains, only weakly affected by their crystallographic orientation. This leads to
steep stress gradients, an effect which is naturally more pronounced in small ferritic
grains that lie in regions with relatively high martensite volume/area fraction. The
stress partitioning in martensite also depends on orientation and the neighbourhood:
The connected network of martensite in the upper left regions exhibits a rather large
stress. However, individual orientations lead to a visible partitioning within individual
grains. Most of the small, angular shaped martensitic grains that are distributed all
over the microstructure show a stress clearly below the average load in martensite.

The subsequent merging and averaging of individual computation points into larger
areas in figs. 3.6b to 3.6f shows, how sensitive the averaged response is on the local
microstructure: Even the four quarters of the investigate microstructure do not show
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Figure 3.7: Deformation gradient Fx in horizontal loading direction at different
deformation levels of a 1618 × 1154 patch. With increasing deformation, the spread
in the local deformation grows.

the same stress response as the whole patch, despite the fact that they contain all more
than approximately 25 individual ferrite grains. This clearly shows that a statistically
RVE for a given DP steel grade cannot be based on a small microstructural patch only,
especially since the microstructure varies significantly within a single sheet (Peranio
et al., 2012).

The results presented in fig. 3.7 show the evolution of the strain distribution with
increasing applied strain, where in figs. 3.7a to 3.7c the local distribution is shown and
in fig. 3.7d the averaged response over patches of increasing size is given. In contrast
to the results in fig. 3.6, the full microstructure is investigated. This particularly
means that averaging into larger block sizes (fig. 3.7d) introduces some inaccuracy
because some points are taken into account twice when averaging over the border to
the periodically repeated points. Two important conclusions can be drawn from this
figure: (i) the spatial strain distribution is to a large extend constant over time, and
(ii) the absolute spread between lower and higher strain is increasing with increasing
total strain level.

In summary, the microstructure inhomogeneities and the strong phase contrast
present in DP steels require the use of rather large microstructural patches to capture
the average response of a given material. Therefore, a fast solution method as the
spectral solver is especially favorable for the determination of average quantities like
yield surfaces and stress–strain curves. It should also be mentioned that the 2D
simulations tend to exaggerate the effect, as e.g. a soft ferritic grain is not supported
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by sub-surface martensite and vice versa. A detailed investigation on the effects of
subsequent slicing of a 3D volume element to estimate the errors introduced in strain
and stress partitioning on DP steels is presented in subsection 3.2.2 “Subsurface Effects
in Simplified Dual Phase Steel” and Diehl et al. (2015).

Coupled Experimental–Numerical Study As already outlined, the microstructure shown
in fig. 3.3a is investigated experimentally and by CP simulations. Hence, first a
comparison of both results is presented here followed by a detailed discussion of the
observed stress and strain partitioning. The comparison and the discussion are based
and follow closely Tasan et al. (2014b).

Comparing the overall strain distributions obtained from the experiments (fig. 3.8b)
to those from the simulations (fig. 3.9a) reveals that many features are in good
agreement, especially:

• A strong strain partitioning is observed among ferrite and martensite (compare
e.g. rightmost images in figs. 3.8b and 3.9a). A more quantitative analysis, given
in fig. 3.10, shows that in the simulated results the ferrite grains accommodate
most of the deformation, i.e. ε̄vM = 0.12 ± 0.09 at an average deformation of
ε̄vM = 0.10 compared to εvM = 0.02±0.01 in martensite. These values correspond
well to the experimentally observed strong partitioning shown in the same graph.

• There is also good qualitative agreement in the level of scatter observed in
the ferritic regions. A large scatter (εvM = 0.020 − 0.35 for a nominal strain of
εvM = 0.010) corresponds to the highly heterogeneous nature of strain distribution
in ferrite, which is clearly seen in fig. 3.8b and fig. 3.9a.

• The strain in many ferritic regions is localised in bands oriented at 45° to 50°
w.r.t. the loading direction in both experiment and simulation.

These observations indicate that the model is suitable to describe the overall me-
chanical behaviour correctly. However, there are some differences between simulation
and experiments regarding the exact location of some of the high strain bands. The
possible reasons of these differences are discussed later on.

Given the good correlation of the strain distribution between simulation and exper-
iment, von Mises stress maps obtained from simulations (fig. 3.9b) are considered
to represent the correct stress partitioning in the microstructure during the in-situ
experiments. For further discussion, the undeformed microstructural image is sub-
divided into four regions, termed (i), (ii), (iii), and (iv) (see fig. 3.8b). As already
observed in fig. 3.6a, it can be seen that long and thin martensite connections aligned
with the loading direction experience the highest stress while smaller, globular shaped
martensite areas show rather small stresses. The observation from fig. 3.7 that strain
partitioning is spatially constant is confirmed here for the stress: The local stress peaks
up at these points right away with the start of straining. Already at ε̄vM = 0.03, the
stress distribution in martensite is very heterogeneous and the pattern is kept with
increasing deformation. Notch effects arising from morphological irregularities also
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contribute to the high stresses observed in the martensitic areas. Stress heterogeneity
is also observed in martensitic regions where morphology or geometrical orientation
do not seem to play a significant role (see, e.g. the large martensite grains in region
(iii)). It is thus clear that the stress in martensite depends on the crystallographic
orientation of each martensitit block (Morito et al., 2003), although this does not
reflect to a significant difference in strain within such large martensitic regions.

The influence of martensite constitutive properties on the stress partitioning is
presented in fig. 3.11. Here it is clearly seen that the martensite accommodates most
of the stress in the microstructure independently of its exact constitutive behaviour.
Martensite has an equivalent stress of σvM = 1.0 − 4.0 MPa compared to σvM =
0.1 − 1.0 MPa in the ferrite. Two trends are evident: (i) for the martensite with the
lower yield stress shown in fig. 3.11c, the stress distribution within the martensitic
regions is more homogeneous compared to the case with higher martensite yield stress
values (fig. 3.11d). (ii) Stress heterogeneity in martensite is significantly decreased
when the martensite behaviour is assumed to be isotropic (compare fig. 3.11a with
fig. 3.11b). However, the overall strain partitioning and the stress distribution in ferrite
is not significantly influenced by the constitutive parameters of the martensite. This
explains, why the experimental and and simulated results are in good agreement, even
though the martensite constitutive behaviour is not known as exactly as the ferrite
properties.

The results presented above demonstrate the vast amount of reliable simulated
micro-mechanical data that can complement the experimental findings. Hence, the

(a) SE images. Global stress strain curves are provided as insets.

0.40

0.00

εvM

(b) μDIC strain maps.

Figure 3.8: Results of the in-situ deformation experiments in the undeformed state
(left) and at an average strain of ε̄x = 0.05 (center) and ε̄x = 0.08 (right).
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obtained results allow a discussion regarding the validity of the observed DP micro-
mechanics and the gained understanding that enables to develop guidelines for the
development of microstructures tailored to desired properties.

The overall success in capturing the similar qualitative (see fig. 3.8b and fig. 3.9a) and
quantitative (see fig. 3.10) strain distribution trends in simulations and experiments
strongly underlines the correctness of the presented simulation results. However,
differences are observed in some cases as well, for example regarding the position of the
highly strained bands. More specifically, the simulations reveal strain bands that are
following narrow ferritic zones in regions with higher martensite content (e.g. regions
(ii) and (iii)), whereas in ferritic regions that are more remote from martensite islands
(e.g. in region (iv)), the strain distribution is smoother compared to the experimental
results. The causes of these deviations are discussed in the following paragraphs, and
tracked to known limitations of the experimental methodology or to the underlying
simplifications in the simulation methodology.

The main limitation for the experiments is that SEM is a surface analysis technique
and cannot (at least in a non-destructive manner) be used to reveal 3D information of
the investigated microstructure. This inevitably introduces the columnar microstruc-
ture in the DP simulation model, while in reality there may be martensite layers below
the surface ferrite grains, or vice versa (see also subsection 3.2.2 “Subsurface Effects
in Simplified Dual Phase Steel” and Diehl et al., 2015). However, as shown in Tasan
et al. (2014a), a post-mortem serial sectioning methodology allows assessing the role
of the underlying microstructure in a critical manner and can partially compensate
the difficulties associated with the 2D modelling approach. An example is discussed
regarding region (iii), where a significant difference is observed between experiments
and simulations (rightmost images in figs. 3.8b and 3.9a). The simulations predict a

0.40

0.00

εvM

(a) von Mises strain in ferrite. Gray areas indicate martensite.
1.0 4.0

0.0 1.0
σvM/GPa

(b) von Mises stress in ferrite and martensite.

Figure 3.9: Results obtained from the CP simulations at an average strain of ε̄x =
0.03 (left), ε̄x = 0.05 (center) and ε̄x = 0.08 (right).
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strain band running throughout the gap between two large martensite grains, while in
the experiments such a pronounced strain band is not present, and the strain is much
more localised at the narrowest opening between the two martensite grains. Closer
inspection of the rightmost image in fig. 3.8a reveals that this latter localisation point
is a continuation of a strain band from region (ii) that penetrates the large martensite
grain. The serial sectioning data presented by Tasan et al. (2014a) reveals that this
large martensite grain is considerably thinner in the z-direction with respect to other
martensitic regions in the patch. Thus, the strain band approaching from region (ii)
can easily penetrate these large (but thin) martensite regions and cause the unexpected
strain localisation. This observation obviously cannot be captured in the simulations
where the particular martensite grain—like all other grains—is considered columnar.
Nevertheless, given that only one of the considered four regions has a significantly
different subsurface structure (i.e. region (iv)), the overall influence of the subsur-
face microstructure is observed to be limited in the given case. A more generalised
discussion on subsurface effects on surface observations is given in section 3.2.2.

For the simulations, incorporating effects of (currently not implemented) phenomena
such as pre-hardening due to transformation-induced geometrically necessary disloca-
tion (GND) and damage modelling are also important for improving the prediction
of the micro-mechanical behaviour of DP steels. Most obvious examples for the for-
mer are observed through the hard response of small ferritic grains with high initial
GND density (Calcagnotto et al., 2011) that is created during processing due to the
different thermal (expansion) properties of ferrite and martensite. Even though it is
clear that the local strain distribution is most strongly dependent on the distribution
heterogeneity of martensite (see the strain levels in the identified regions in the left-
most image in fig. 3.8b), the experimental results show that the strain distribution
in ferrite is also highly heterogeneous. Sharp deformation bands nucleate at ferrite

Figure 3.10: Quantitative analysis of strain partitioning between ferrite and marten-
site evaluated from the experiments (averaged over 50 μDIC data points per phase)
and the simulations (averaged over all data points) for ferrite and martensite.
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grain interiors, and then propagate along the softest routes with 45° to 50° inclination
to the loading direction, even in regions with little or no martensite (i.e. region (iv)).
This experimental observation of the strong heterogeneity of strain distribution within
the ferritic grains (fig. 3.8b) suggests that pre-straining effects may play a significant
role, and, therefore, should be taken into account in future simulations.

An example for a damage incident i.e. the micro-cracking observed at comparatively
low strain levels in a narrow martensite section surrounded by ferrite is given in Tasan
et al. (2014a). In the simulation, high hydrostatic stress can be seen in the vicinity of
this damage incident and it is assumed that this is a general phenomenon that plays
a significant role in the plasticity of martensite (and the surrounding ferrite). Since
most martensite grains have irregular geometries that lead to stress concentrations,
early damage nucleation is assumed to take place frequently. However, at these low
strain levels where damage nucleates, the surrounding ferrite is not yet fully hardened,
and thus can successfully arrest these micro-cracks, also effectively dispersing the
stress concentration in the process. This effect is believed to be the reason of the
discrepancy between results of experiments and simulations observed for martensite
plasticity at early strain levels (fig. 3.10). Softening due to damage in both phases
will assumably lead to a re-distribution of strain in the microstructure. Incorporating
damage mechanics is therefore—in conjunction with the use of 3D microstructures—the
most important future modelling task that is assumed to improve the prediction quality
more than a refined plasticity model can do.

In summary, the integrated experimental–numerical methodology presented here is
able to capture many of the quantitative aspects such as strain and stress partitioning in
a realistic way. Further authenticity can be implemented, and a significantly improved
quantitative–qualitative agreement can most likely be achieved when advanced material
models including damage mechanics are used and if 3D effects could be successfully
taken into account. As discussed later on, probably taking either a 3D microstructure
or damage modelling into account is not sufficient. Due to the close interconnection of
3D effects and strain localisation, both limitations need to be expelled together (see
also section 3.2.2).

A number of interesting observations regarding DP steel micro-mechanics can be
made: As shown in the strain maps fig. 3.8b, the deformation in ferrite is significantly
localised. That is, in many ferritic grains high strain gradients can be found. This
observation is in contrast to some of the earlier works with limited spatial resolution
(e.g. by Tasan et al., 2010), where more homogeneous strain distributions in ferrite
grains were recorded. This underlines that the strain partitioning process in martensite–
ferrite microstructures is more complex than assumed for a simple hard–soft composite
material. The soft ferrite phase here has processing-inherited in-grain microstructural
heterogeneity, which leads to an in-grain strain partitioning. Ghassemi-Armaki et al.
(2013) found similar mechanical heterogeneity when doing micro pillar compression
experiments in ferritic grains. Various causes can be proposed for such heterogeneity,
e.g. dislocation density gradients due to transformation-induced GNDs, transformation-
induced residual stresses, ferrite grain size heterogeneity, etc., all leading to the same
micro-mechanical behaviour: The deformation of the relatively harder shell of a given
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(a) anisotropic martensite, with default
yield behaviour.

(b) isotropic martensite, with default
yield behaviour.

(c) anisotropic martensite with lower
yield stress values.

(d) anisotropic martensite with higher
yield stress values.

1.0 4.0

0.0 1.0
σvM
/GPa

Figure 3.11: von Mises stress distribution for differently modelled martensite con-
stitutive response (table 3.2b) at an average strain of ε̄x = 0.08.

ferritic grain is further constrained due to the surrounding hard martensite, forcing
the ferritic center to accommodate most of the deformation in sharp strain bands.
From an alloy design point of view, this result suggests that the ferrite properties
are as important as those of the martensite in the design of DP steels with tailored
mechanical behaviour.

The early and time-wise almost constant stress and strain partitioning might lead
to damage nucleation, preferentially at martensitic sites (figs. 3.9b and 3.10). Since
the CP simulations suggest that the shape of the martensite and its local alignment
with respect to the loading direction do play a direct role (fig. 3.9b), controlling
the shape of the martensite seems a promising way to hamper early damage. This
analysis is supported by experimental reports that show that high martensite plasticity
and damage resistance can be achieved when the martensite morphology is spherical
(Calcagnotto et al., 2011).

Simulations with different martensite behaviour reveal another interesting obser-
vation regarding the micro-mechanics of DP steels (see fig. 3.11, as well as fig. 3.10):
Apparently, the behaviour of the martensite has only a small influence on the stress–
strain partitioning in the microstructure. Alteration of martensite properties has only
a pronounced effect in the heterogeneity of stress distribution inside the martensitic
regions (fig. 3.11). For example, for the harder martensite shown in fig. 3.11d, relatively
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higher stress levels are observed within the narrow zones aligned parallel to the loading
direction, compared to small, isolated martensitic islands. This observation again
clearly underlines the importance of martensite shape and morphology in DP steel
micro-mechanics. Thus, avoiding early damage nucleation in martensite, especially
when martensite carbon content is high, requires avoiding morphological irregularities
to avoid stress intensification effects.

3.1.2 Strain Localisation in Magnesium
The results presented here are contributions to a joint experimental–numerical investi-
gation by Wang et al. (2014) on Magnesium (Mg) and closely follow this study. Mg
and its alloys have received great attention for potential use in light weight structures
because with a mass density of 1740 kg m−3 Mg is the lightest structural metal. How-
ever, the application of materials with hexagonal (hex) crystal structure is restricted
by their poor formability and wrought Mg alloys develop strong basal-type textures
during processing at room temperature caused by the lack of available deformation
mechanisms (Yoo, 1981). Basal slip—typical for hex materials—and tension twinning
are the primary deformation modes observed at room temperature in Mg. Both are
easy to activate and their critical resolved shear stress (CRSS) could be determined in
single crystal experiments by Akhtar et al. (1969) to be in the range of a few MPa.
Slip on the basal systems leads to a grain-reorientation, such that the basal planes
are closely aligned with the main material flow direction. This limits the contribution
of the basal slip system to further deformation and hence, fracture is observed a
comparably low strain levels (Gottstein et al., 2005; Humphreys et al., 2004).

Twinning allows strain along the crystal c-axis, providing additional degrees of
freedom matching the requirement for five independent shear systems in the classical
Taylor–Bishop–Hill sense (Agnew et al., 2001; Bishop et al., 1951). As outlined
in section 2.2.2 twinning is—in comparison to slip—of unidirectional nature; i.e. a
twin system is limited in its contribution to arbitrary shape changes. This further
restriction of available deformation mechanisms explains the limited ductility of Mg.
However, investigation of grain scale mechanics by Raabe et al. (2001) have shown
that the Taylor–Bishop–Hill criterion must not be fulfilled at the local grain scale,
since collective deformation of grain clusters can in certain cases provide a sufficient
number of shear degrees of freedom for compatible polycrystalline deformation (Zhao
et al., 2008). In room temperature deformation of Mg, these plastic heterogeneities and
strain localisations are typically observed in the form of shear bands. Shear banding
in Mg is a mesoscopic “grain-cluster” deformation process where the grains inside the
shear band are reported to subsequently re-orient in the macroscopic shear direction,
i.e. “soften” the sheared region with respect to further basal dislocation slip during
continuing deformation (Barnett et al., 2004; Chun et al., 2012; Ion et al., 1982).
The mechanisms associated with such shear band formation in Mg alloys are not well
understood and are focus of current research (Chun et al., 2012; Hazeli et al., 2013;
Kim et al., 2012; Scott et al., 2013). Shear band formation mechanisms are also the
target in the presented experimental–numerical analysis following Wang et al. (2014).
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In Wang et al. (2014), the activation of plastic heterogeneities such as shear bands
and the effects of the local stress state on tension twinning with specific regard to grain-
to-grain interactions and collective grain mechanisms were experimentally investigated
on pure Mg and three different Mg-alloys. CP simulations are conducted to gain
more quantitative insights into strain partitioning, local micro-mechanical stress states
and the associated slip system activity, and the mechanisms leading to shear band
formation during deformation. The data obtained by the simulations supplements the
experimental findings, e.g. knowing the local stress state instead of assuming it to
follow the applied load. In the presented example different scenarios for the applied
BCs allow doing virtual experiments that are not feasible in in-situ experiments.

Experimental Preparation and Characterisation

The pure Mg was melted and solidified by induction in a steel crucible under Argon (Ar)
pressure (1500 kPa). Homogenisation annealing of the as-cast materials was performed
for 24 h at 450 ◦C under Ar atmosphere followed by water quenching. The material
was hot rolled at 500 ◦C to a total engineering thickness reduction of 50 %, imposing
8 % to 10 % reduction per pass. Subsequent recrystallisation annealing was carried out
at 350 ◦C under Ar atmosphere for 30 min again followed by water quenching.

The in-situ specimens were cut via spark erosion to a size of 5 μm × 2 μm × 3 μm
(longitudinal direction × compression direction × transverse direction). Perpendicular
to the compression direction, the observation plane (transverse direction) was mechani-
cally ground followed by electro-polishing using the AC2 electrolyte (Struers GmbH,
Willich, Germany). Prior to compression the grain orientations were measured by
EBSD for the CP model. Displacement controlled in-situ compression experiments were
carried out with approx. 0.002 mm displacement per compression step (corresponding
to 1 % strain). The samples were kept under load in the compression stage throughout
the measurements, hence, microstructure relaxation was minimised. Compression
was continued until a maximum total strain of approximately 5 %, when increased
surface roughness produced by slip traces and twins after higher deformation inhibits
further SEM analysis. The microstructure evolution and active deformation carriers
(dislocations, twins) during in-situ compression tests were tracked using EBSD and
electron channelling contrast imaging (ECCI) on a Zeiss 1540XB Crossbeam FIB-SEM
instrument at an acceleration voltage of 15 kV. Identification of active deformation
systems was conducted by trace analysis in the ECCI images combined with orientation
data from EBSD.

Modelling Details

The orientation information from the EBSD measurements of the undeformed ROI
shown in fig. 3.12b is taken as the initial configuration for the CP simulation. Twinning
is introduced for the six first-order tension twins (T1) according to the concept outlined
in Kalidindi (1998) into the phenomenological material model. The following slip
and twin systems are incorporated: three basal ({0 0 0 1}〈2 1 1 0〉), three first-order
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(a) ECC image. (b) EBSD lattice orientation im-
ages (Top: || to transverse direc-
tion. Bottom: || to compression
direction).

Figure 3.12: Initial Mg microstructures images. Vertical direction is compression
direction.

Table 3.3: Material parameters for Mg, based on Tromans (2011) and Agnew et al.
(2006).

(a) Elastic properties.

Property Value Unit

C11 59.3 × 109 Pa
C33 61.5 × 109 Pa
C44 16.4 × 109 Pa
C12 25.7 × 109 Pa
C13 21.4 × 109 Pa
c/a 1.6235

(b) Dislocation slip.

Property Value Unit

ξ0,basal 10.0 × 106 Pa
ξ∞,basal 40.0 × 106 Pa
ξ0,prism 55.0 × 106 Pa
ξ∞,prism 135.0 × 106 Pa
ξ0,pyr(a) 60.0 × 106 Pa
ξ∞,pyr(a) 150.0 × 106 Pa
ξ0,pyr(c+a) 60.0 × 106 Pa
ξ∞,pyr(c+a) 150.0 × 106 Pa
h0,slipslip 500.0 × 106 Pa
h0,sliptwin 0.0 × 106 Pa

(c) Twinning.

Property Value Unit

ξ0,T1 40.0 × 106 Pa
h0,twintwin 50.0 × 106 Pa
h0,twinslip 150.0 × 106 Pa
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prismatic 〈a〉({0 1 1 0}〈2 1 1 0〉) six first-order pyramidal 〈a〉({0 1 1 1} 〈2 1 1 0〉), and
six second-order pyramidal 〈c + a〉({2 1 1 2}〈2 1 1 3〉). Following Tromans (2011) and
Agnew et al. (2006) the parameters to model the constitutive response are given in
table 3.3. Like in the experiments, a quasi-static compression loading at 1.0 × 10−3 s−1

is applied to the microstructural patch until a final average strain of approximately
ε̄22 = 0.05 is reached. Since the local deformation state inside a sample of macroscopic
dimensions can profoundly differ from the macroscopic BCs (Gutierrez-Urrutia et al.,
2013; Raabe et al., 2001), the microstructure is loaded with four different BCs in order
to understand the effect of the loading conditions on the evolution of an experimentally
observed shear band.

In a first simulation run, plane strain compression (F11, i.e. longitudinal direction,
adjusted such that this direction is stress free on average, i.e. P11 = 0) without
allowing in-plane and out-of plane shear is applied. These simulation conditions
are macroscopically equivalent to the deformation state in the sheet center layer of
industrially rolled material or—when translated into laboratory scale—channel die
compression conditions. In a second CP simulation, plane strain compression allowing
in-plane shear in the image plane (F12 additionally adjusted such that P12 = 0)
was applied, mimicking a rolling-type loading situation where macroscopic thickness
reduction is applied and shear is admitted. The third simulation was performed
applying plane strain compression and allowing out-of-plane deformation normal to
the image plane (F33 additionally adjusted such that P33 = 0). In order to further
analyse the impact of shear stress, a fourth CP simulation was performed imposing
compression loading and allowing additional out-of-plane shear (F12, F13, F23, and
F33 additionally adjusted such that P12 = P13 = P23 = P33 = 0).

The imposed boundary conditions at the end of the loading in terms of the deforma-
tion gradient F are as follows:

F1 =

⎡
⎣ ∗ 0.0 0.0

0.0 0.95 0.0
0.0 0.0 1.0

⎤
⎦ F2 =

⎡
⎣ ∗ ∗ 0.0

0.0 0.95 0.0
0.0 0.0 1.0

⎤
⎦

F3 =

⎡
⎣ ∗ 0.0 0.0

0.0 0.95 0.0
0.0 0.0 ∗

⎤
⎦ F4 =

⎡
⎣ ∗ ∗ ∗

0.0 0.95 ∗
0.0 0.0 ∗

⎤
⎦

Where the “∗” indicates that this component of the deformation gradient is adjusted
as outlined in section 2.3.2 such that the corresponding component of the 1st

Piola–

Kirchhoff stress P equals to 0.0.

Results and Discussion

Pure Mg exhibits a strong basal-type recrystallisation texture (Gottstein et al., 2005;
Humphreys et al., 2004), i.e. most grains adopt an orientation with a low Schmid

-factor for basal slip and tension twinning systems with respect to plane strain bound-
ary conditions. As outlined before, in this case a collective deformation of grain
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clusters can accommodate for the missing degrees of freedom according to the Tay-

lor–Bishop–Hill criterion. The macroscopic shear band observed during the in-situ
compression (fig. 3.13) is a result of such a collaborative grain cluster deformation.

Figure 3.13: ECC microstructure
image at 0.05 compressive strain in
vertical loading direction.

Since no compression or Experimentally, the for-
mation of the shear band was observed to start
in conjunction with massive basal slip traces and
tension twins are formed only after the third de-
formation step. secondary twins were observed,
the formation of the shear band can be attributed
to concentrated basal slip activity. The crystal
orientations of the grains inside the shear band
and in the non-shear-banded areas in pure Mg
were investigated by Wang et al. (2014). The
grains away from the shear band have basal ori-
entations while the grains in the region where the
shear band formed have their basal poles about
5° to 10° deviated from the compression direction,
creating a slightly more favourable orientation for

basal slip. These deformation characteristics observed during in-situ compression are
consistent with microstructures observed during bulk ex-situ compression. Hence, the
deformation microstructure given in fig. 3.13 can claimed to be representative.

The experimental observations impose several questions regarding shear banding
that will be answered with the help of high-resolution CP simulations in the following:

1. Is the observed intense basal slip activity the source for or a result of the shear
band formation?

2. What is the impact of the observed slightly off-basal orientation on the shear
band formation?

3. Why does continuous softening occur as consequence of localised intense basal
slip and not, instead, gradual strain hardening?

As confirmed experimentally, results from the simulation showed mainly activity
on the basal slip systems. Hence, only the basal slip activity is shown in fig. 3.14
for the considered load cases. The strain localisation experimentally observed in the
upper part, as well as the inhomogeneously deforming area in the lower part are also
the spots where high stress gradients could be observed in the simulation results.
Looking at the upper part where experimentally the most severe strain localisation
is observed, it is clear from fig. 3.12b that the orientation of these grains allows easy
slip on basal systems. However, the experimentally determined strain localisation
penetrates horizontally through the whole microstructure, while in the simulation it is
interrupted for the first two load cases.

The results of the first load case, applying plane strain compression, are given in
fig. 3.14a. It is clearly visible that no pronounced strain localisation in the form of a
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(a) Load case 1 “plane strain compres-
sion”.

(b) Load case 2 “rolling”.

(c) Load case 3. (d) Load case 4.

0.4

0.0
3∑

β=1
γβ

Figure 3.14: Accumulated slip on basal systems at 0.05 compressive strain in verti-
cal loading direction for the considered load cases.

shear band occurs, but instead high strain gradients at the grain boundaries are formed
under these conditions. To verify the CP simulation result, channel die experiments
were performed that confirmed that under this loading condition, no shear band is
formed and instead early fracture of the material along the grain boundaries is observed
(Wang et al., 2014). The results of rolling-type loading (fig. 3.14b) show slightly lower
strain gradients at the grain boundaries than under pure plane strain compression
conditions but also no strain localisation in the form of a shear band. This indicates
that the in-plane shear relaxation does not promote shear banding and that instead
out-of-plane deformation components seem to be required for the formation of shear
bands during compression of Mg polycrystals. This assumption is confirmed by the
results of the third load case given in fig. 3.14c. Clearly, a percolation of high basal slip
activity in the upper region of the ROI can be seen in excellent agreement with the
experimentally observed localised basal activity and shear band formation in fig. 3.13.
The results imply the subsequent development of a considerable out-of-plane shear
stress component during compression. A similar shear distribution resulted from the
fourth load case fig. 3.14d, indicating that the additional degrees of freedom do not



60 3 Simulations

contribute significantly to the deformation.
Given the similarity between fig. 3.14c and fig. 3.14d, a detailed discussion on the

numerical results is based on results of both load cases. The experimentally most
obvious feature, which is a strain localisation in the upper part is correctly predicted
by the CP simulation. This indicates that the selected modelling approach is able to
describe the micro-mechanics of the ROI correctly. Additionally, in accordance with
the experimental results, the simulation predicts:

• at the bottom, less strain in the left part of the microstructure compared to the
center part;

• a little deformed grain in the lower right part is surrounded by highly deforming
grains;

• almost no tension twinning activity (not shown).

These findings imply that the out-of-plane shear stress component which is activated
through the percolation of intense basal dislocation slip in slightly off-basal oriented
grains is causing a dynamic self-enhancing process facilitating local softening and
leading to the formation of shear bands in polycrystalline Mg with pronounced basal
texture. Based on the above presented and discussed experimental and computational
results the following mechanisms for shear band formation in basal-textured Mg is
proposed: A cluster of slightly off-basal oriented grains (where the slightly inclined
near-basal texture components might be retained from a preceding inhomogeneous
hot working and/or rotation recrystallisation step) exhibit a slightly more favourable
orientation for basal slip than grains with an almost perfect basal alignment. In these
grains, intensive basal slip is locally activated during the on-set of plastic deformation
leading to a micro-mechanical strain percolation effect in the form of a collective
grain cluster deformation mechanism. This cumulated basal slip extending across
multiple neighboured grains creates a pronounced shear component parallel to the
active basal glide planes (out-of-plane) in the percolation area and, consequently, basal
slip becomes more favourable in this area. Via this self-enhancing dynamical process
strain localisation is facilitated and results in shear band formation.

In summary, the main observations and conclusions of this study presented in
extended version by Wang et al. (2014) are:

1. Below an engineering strain of 5 %, Mg exhibits localised slip activity and twinning
exclusively in shear bands. The strong basal texture and the associated grain
clusters of similar basal orientation in the recrystallised Mg are an important
factor responsible for strain localisation.

2. The combination of experiments and simulations shows that shear band formation
is a result of percolated basal slip activity in slightly off-basal orientated grains.
As a result of this locally cumulated intense basal slip a shear stress component
parallel to the active basal glide planes develops and subsequently eases the basal
slip leading to the formation of shear bands.
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3. In Mg, tension twins are activated in areas with high local stresses, i.e. inside
shear bands. The activation of tension twinning can be understood in combination
with the local stress BC only.

Wang et al. (2014) additionally proposed that twinning is a process of accommodating
local strain and thereby maintaining strain compatibility at grain boundaries rather
than a response to macroscopically imposed strain at low strain levels. Failure to
accommodate strain by twinning results in an orientation gradient in the vicinity of
grain boundaries or even ledges at the grain boundary.

3.2 Artificial Microstructures
The limitations associated with the use of 2D microstructures are already outlined
in section 3.1.1 and will be discussed in detail in this section. However, the (non-
destructive) acquisition of 3D microstructures is time consuming and requires the
availability of e.g. neutron diffraction devices. Therefore—especially when a large
number of microstructures is needed—the generation of artificial microstructures is a
convenient and usually time-efficient alternative to the use of experimentally acquired
microstructures.

Three different simulation series based on artificial microstructures are presented
here. First, in section 3.2.1, two approaches to generate artificial microstructures are
outlined and the results are compared to investigate how the generation methodology
influences stress and strain partitioning. After that, as a follow-up survey to the study
on strain and stress partitioning in dual phase steel, the influences of the unknown
subsurface microstructural features on the experimentally accessible 2D ROI are studied
in section 3.2.2. Finally, pattern formation in polycrystalline ice under cyclic loading is
examined in section 3.2.3 and the limitations of the phenomenological material model
for cyclic loading conditions are discussed.

3.2.1 Comparison of Microstructure Generation Approaches
A well-known and widely used approach to generate artificial microstructures is the
Voronoi tessellation. In this approach, the area or volume under consideration is
partitioned into cells (i.e. “grains” in materials science) such that all cells together fill
the whole area or volume under consideration. This is done by placing N seeds for N
grains in the ROI; the area or volume that is closest to a given seed makes up a single
grain. The grain boundary is than exactly located on the half of the distance between
two neighbouring seeds. In the simplest case, the seeds are randomly distributed.
When applying this approach on a regular grid as it is needed for the spectral solver,
the use of efficient algorithms for the nearest neighbour search, e.g. based on a k-d

tree (Kennel, 2004) enable a fast tessellation.
However, it is know that microstructures generated with the help of a standard

Voronoi tessellation differ with respect to



62 3 Simulations

1. Shape of the grains

2. Grain-size distribution

from real microstructures as shown by, e.g., Xu et al. (2009).
Several approaches exist to approach the experimentally observed microstructural

parameters: Lyckegaard et al. (2011) have shown that the weighted Voronoi tessel-
lation (also called the Laguerre tessellation) allows reconstructing experimentally
measured microstructures much better than the standard Voronoi tessellation. In
this approach, assigning a weight to the seed points shifts the grain boundaries from
the halfway position between the seeds to a position depending on the weights of the
two adjacent grains. As a result, the grain size distribution can be adjusted by the
choice of the weights and does not need to follow the one observed in the case of the
standard approach with random seeds. A second approach that can also be used in
conjunction with the Laguerre tessellation is the use of a non-random seed point
distribution. Xu et al. (2009) proved that this approach in combination with a Monte

Carlo simulation can be iteratively applied to generate microstructures that follow a
prescribed grain size distribution. Since both methods are still closely related to the
Voronoi tessellation, they are are able to change the grain size distribution but fail
to generate grains with realistic grain shapes. More specifically, the grain boundaries
are planes or straight lines. The simulation of grain growth (Krill III et al., 2002) is
one way to change grain shape and size simultaneously.

In this study, microstructures are generated with a standard Voronoi tessellation
and compared to microstructures obtained by a grain growth simulation. The aim of
the simulation series is the investigation of possible differences in the micro-mechanical
response of both approaches, which are either due to the grain shape or due to the grain
size distribution. This investigation is of interest as a meta-study on micro-mechanical
simulations, because a vast amount of current work is using Voronoi tessellated
structures, i.e. implicitely it is usually assumed that the differences between these
structures and real microstructures are negligible.

Isotropic grain growth

The simulation of grain growth in polycrystalline materials is often done using
a phase field approach. Phase field models describe interfaces in a diffuse way
and are suitable to model phenomena like solidification, crack propagation, and
dislocation dynamics (Chen, 2002). For the simulation of grain growth, interface
energy is assigned to the grain boundaries and minimised by repeated diffusion
and sharpening. Sharp edges are associated with a high interfacial energy, and,
hence, they vanish during the simulation of grain growth which is equivalent to
the reduction of interfacial energy. In the isotropic model, the dependence of
the energy on the grain boundary character is neglected. This allows modelling
grain growth depending only on a unique grain number without considering the
grains orientation or phase.
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Microstructures

For a series of simulations, 14 microstructures with 100 grains are generated by a
standard Voronoi tessellation. The microstructures have a periodic structure to
avoid unrealistic grain boundaries that require in the case of experimentally obtained
microstructures to limit the ROI to the center of the volume element (VE). Seed point
locations are randomly chosen. The (initially constant) orientation of the individual
grains is also randomly selected in Euler space. For a second series of simulations, first
14 microstructures with 1000 grains are generated also using a Voronoi tessellation.
In a follow-up step, an isotropic grain growth algorithm is used to change grain shape
and size distribution of these microstructures while retaining periodicity. In order
so see a significant change in the microstructure characteristics, the grain growth
simulation was performed until 900 grains are consumed by the growing grains. The
same orientations as for the first microstructures have been randomly assigned to
the 100 remaining grains. Hence, two sets with each having 14 microstructures are
created. Each microstructure has 100 grains and the Euler angles of the grains match
pairwise between two microstructures in both sets. The geometries are mapped on a
256 × 256 × 256 grid on a unit square cube. This high resolution was chosen to avoid
any artefacts at the grain boundaries due to the “staircase-shape” approximation of a
smooth surface.

The top view on one randomly selected microstructure for both approaches is
shown in fig. 3.15. From this figure, the grain shape difference can clearly be
seen: Grains generated using the standard Voronoi tessellation (see fig. 3.15a)
have boundaries without curvature and acute angles between the straight segments.

(a) Microstructure generated by a
standard Voronoi tessellation.

(b) Microstructure generated by an
isotropic grain growth simulation of
originally 1000 grains.

Figure 3.15: Top view on two microstrucutres consisting of 100 grains generated by
two different approaches. Color indicates unique grain number.
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These features typical for the standard Voronoi tessellation are energetically un-
favorable in a grain growth simulation and therefore cannot be seen in fig. 3.15b.

Figure 3.16: Grain size distribu-
tion obtained by Voronoi tesse-
lation and by a grain growth algo-
rithm. The circle and the ellipse
indicate non-empty bins.

Since the grain size distribution is difficult to
estimate from a 2D slice (i.e. comparing fig. 3.15a
with fig. 3.15b), the average grain size for all 2 × 14
microstructures is shown in fig. 3.16. A significant
difference can be seen here: Compared to the
dense size distribution of the standard Voronoi

tessellation, where most of the 1400 grains occupy
approximately 1/10 of the volume and the others
take up at most twice that volume, the grain
growth simulation results in a strong grain size
partitioning. One single grain is occupying up to
60 % of a volume in a particular microstructure.
The requirement of having 100 grains in each VE
results in a large number of extremely small grains
that are just about to be consumed by the growing
large grains.

It should be noted that neither of the grain
size distributions is representative for all real mi-
crostructures, since in general fundamentally dif-
ferent grain size distributions might be observed
in reality. The two sets rather represent two spe-
cific cases: The first set of microstructures has
characteristics typical for Voronoi tessellated

structures as investigated in detail by Meijering (1953) and Kumar et al. (1992). Like,
e.g. Nickel (Dalla Torre et al., 2002), the grain size distribution follows a lognormal
distribution. However the experimentally obtained distributions might have different
standard deviations than the 0.45 found in Voronoi tessellated structures Xu et al.
(2009). The design goal for the second set was the creation of a microstructure that
differs significantly from the first one. With a few extremely large grains and a high
number of small grains it can be considered as a microstructure that has undergone
abnormal grain growth.

Modelling Details

Since the exact material behaviour is not of special interest in this study, an existing
parameter set to model copper using the phenomenological material model is used to
describe the single crystal behaviour. The parameters for the fcc structure with 12
〈1 1 1〉{1 1 0} slip systems are given in table 3.5. The VE was loaded in uniaxial tension
with a constant technical strain rate of 1.0 × 10−3 s−1 with stress free normal directions:
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Ḟ =

⎡
⎣0.001 0.000 0.000

0.000 ∗ 0.000
0.000 0.000 ∗

⎤
⎦,

where the asterisk “∗” indicates a stress free component for P . This load was applied
for 20 s, i.e. until a final strain of 20.0 % was reached.

Table 3.5: Material parameters for copper.

Property Value Unit

C11 106.8 × 109 Pa
C12 60.4 × 109 Pa
C44 28.3 × 109 Pa
γ̇0 1.0 × 10−3 m s−1

ξ0 31.0 × 106 Pa
ξ∞ 63.0 × 106 Pa
hαβ 75.0 × 106

n 20.0
a 2.25

Results and Discussion

In the following, the results of the VEs in terms of the equivalent von Mises strain
(εvM) and stress (σvM) are discussed. Despite the significantly different grain size
distribution (see fig. 3.16), no difference in the global stress–strain curves can be
observed. A more detailed analysis of the average stress and strain state in the
individual grains confirms this observation: In fig. 3.17 εvM (fig. 3.17a) and σvM
(fig. 3.17b) are shown in comparison. The results shown in green color (left side)
are obtained from the microstructures generated with the help of the grain growth
simulation, the results given in blue (right side) are obtained from the VEs generated
by standard Voronoi tessellation. Figure 3.17a shows that only a slight difference in
εvM exists between the two approaches. Namely, the strain of the Voronoi tessellated
microstructures is slightly more concentrated around the average value of 20 %. In the
stress response, a less pronounced peak at high values in a bimodal distribution can
be seen for the microstructure obtained by the grain growth simulation.

For a quantitative analysis of the in-grain stress distribution, the following procedure
is applied: First, a normed histogram distributing the results into 60 bins1 designated
as h60

0 (n) n = 1 . . . 2800 was computed for each of the 2800 grains. The results of
individual grains for the two approaches are then summed up to get two histograms
h60

0,grown =
∑1400

n=1 h60
0 (n) and h60

0,Voronoi
=
∑2800

n=1401 h60
0 (n). Finally, the difference

between the two histograms is calculated per bin as Δh60
0 = h60

0,grown − h60
0,Voronoi

and

1 The integral over the 0 to 60 bins equals to 1.0.
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(a) Distribution of εvM per grain of
all 28 microstructures.

(b) Distribution of σvM per grain of
all 28 microstructures.

Figure 3.17: Distribution of equivalent strain, εvM, and equivalent stress, σvM, re-
sulting from the grown microstructures on the left (green) and the standard Voronoi

tessellation on the right (blue).

Figure 3.18: Relative difference in distribution of normalised in-grain stress values.
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normed over the average per bin 0.5 ·(h60
0,grown +h60

0,Voronoi
). The plots of this procedure

given in fig. 3.18 indicate that the in-grain stress distribution differs significantly
between the two microstructure generation approaches. Using the standard Voronoi

tessellation results in a more flat distribution, where especially the high stress values
occur less often than for the microstructures having grown grains. For the in-grain
strain distribution (not shown), a similar behaviour is observed, where, however, the
increase for small values was less pronounced than for the stress distribution shown in
fig. 3.18.

It can be assumed that the high number of small grains in the microstructures that
have undergone grain growth is the reason for the observed differences in the in-grain
stress distribution. These grains have a comparably high surface-to-volume ratio and
therefore a higher ratio of material points at the grain boundary that adapt to the
behaviour of the differently oriented neighbouring grains. Since the phenomenological
material model is a size-independent and local model, no size effects or a strain gradient
behaviour can counteract the resulting stress and strain partitioning. However, the
absence of sharp edges in comparison to the Voronoi tessellated structures might
soften the effect coming from the grain size alone. Further investigations using a
constraint Voronoi tessellation that allows using the grain size distribution of the
microstructures generated with the grain growth simulation as an input parameter will
help to interrogate if this is a result of the grain shape or of the grain size distribution.

In summary the results show that the grain shape and grain size distribution have
only a minor influence on the average results when using the phenomenological material
model. This indicates that using the fast standard Voronoi approach is justified
for simulations that aim at investigating e.g. the stress–strain response or the mean
stress–strain partitioning. However, in the case of investigations at a very local scale,
the artificial grain shape and/or grain size distribution introduces an error that might
influence the results. For example, more realistic grain structures should be used when
damage mechanisms are included in the simulation. In damage modelling, already
small local deviations might influence the behaviour of the whole structure drastically
and therefore result in unexpected behaviour.

3.2.2 Subsurface Effects in Simplified Dual Phase Steel
As outlined in section 3.1.1, a full understanding of the local stress and strain partition-
ing that determines the global mechanical properties of DP steels is not achieved yet.
Despite the general ability of taking the full 3D microstructure into account (Chen
et al., 2014), most recent simulation approaches comparing experimental and simulated
results (e.g. Ramazani et al., 2014; Tasan et al., 2014a) are limited to two dimensions
due to experimental limitations. More precisely, the acquisition of 3D strain maps via
digital volume correlation or of stress partitioning via X-ray diffraction is associated
with high experimental effort. Hence, even though Landron et al. (2013) presented a
study on void coalescence in DP steels using 3D data, most of the investigations are
still limited to surface measurements of microstructural features and—with the help of
digital image correlation—strain partitioning.
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Figure 3.19: Color map
for the IPFs (parallel to z).

To better understand the behaviour investigated in sec-
tion 3.1.1, here the effects of subsurface features—that are
difficult to obtain in a non-destructive fashion—on exper-
imentally obtainable surface measurements is investigated.
The pioneering work of Zeghadi et al. (2007a,b) has al-
ready shown the importance of subsurface microstructure.
The presented study extends their investigations to the
case of a dual phase microstructure. Moreover, the size
of the region of influence is quantified by systematically

evaluating the interactions of microstructural features in relation to the distance to the
ROI at the surface. This study is published in extended form by Diehl et al. (2015)

Microstructures

nmart Microstructure
A B C

0.1

0.2

0.4

Figure 3.20: Periodic microstructures A,
B, and C (left to right) discretised by 1003

points and containing a total of 400 grains.
Black color indicates martensite grains with
fraction of nmart = 0.1, 0.2, and 0.4 (top to
bottom). For IPF legend see fig. 3.19.

Three periodic, artificial grain structures,
each filling a unit cube, are created by a
standard Voronoi tessellation (also see
section 3.2.1) approach based on 400 ran-
domly1 placed seed points each. These
structures, referred to as “A”, “B”, and
“C”, are discretised by a regular grid of
100 × 100 × 100 points. All grid points
of one grain are designated the same
phase (ferritic or martensitic) with ini-
tially homogeneous and randomly cho-
sen lattice orientation. For each of the
three microstructures, a fraction nmart =
0.1, 0.2, and 0.4 of the grains are ran-
domly selected as martensitic, result-
ing in martensite volume fractions of
9.24 % to 11.23 %, 18.41 % to 20.56 %,
and 38.83 % to 40.62 %, respectively. The
resulting nine initial microstructures are
given in fig. 3.20.

Parameters for the constitutive be-
haviour are the same as in the study
on strain and stress partitioning in dual
phase steel presented in section 3.1.1 (ta-

ble 3.1).

1 Ensuring that at least one voxel is assigned to each seed point when discretising on a 643 grid.
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Δz Microstructure Microstructure
A B C A B C

0.3

0.5

0.7

Figure 3.21: Localised variation of grain orientation (left) and grain shape (right).
Grains whose Voronoi seed points fall within a layer of thickness t = 0.2 centered Δz
below the (top) surface have altered lattice orientation or altered postion of seed point
relative to unaltered structure (top, transparent, and bottom, dark gray color), respec-
tively. The fade gray color indicates the “buffer zone”. For IPF legend see fig. 3.19.

Grain Orientation Variation In a first simulation series, the influence of the subsurface
grain orientation on the kinematic response at a surface is investigated. For that, 27
variants of the initial 9 microstructures are created by randomly altering the lattice
orientation of grains that belong to Voronoi seed points within a slice of thickness
t = 0.2 centered at the plane Δz = 0.3, 0.5, or 0.7 below the surface (at z = 1).
No values Δz < 0.3 are considered, since the lattice orientation of grains observable
at z = 1 (i.e. the ROI at the surface) might be changed. A “buffer zone” of height
0.2 (corresponding to 20 additional grid layers along z) is added in between periodic
repetitions of the microstructure (see left side of fig. 3.21). Elastic-isotropic behaviour
with C11 = 20.0 GPa and C12 = 13.3 GPa is assigned to this zone. Introduction of the
buffer zone above the ROI at z = 1 results in boundary conditions that are reminiscent
of a free surface. The microstructure geometry can be best described as a “thick film”.

Grain Shape Variation In the same spirit as for the grain orientation variation, 27
variants of the initial 9 microstructures are created by randomly altering the position of
Voronoi seed points within a slice of thickness t = 0.2 centered at the plane Δz = 0.3,
0.5, or 0.7 below the surface (at z = 1). The change in position is limited to a distance
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of the equivalent average grain radius.1 As a consequence of the altered seed positions,
the tessellation results in differently shaped grains in the vicinity of the affected plane
(see right side of fig. 3.21). No values Δz < 0.3 are considered, since the geometry of
the grain structure observable at the ROI might be changed by altering the seed point
coordinates close to this (surface) plane. Again, to mimic the effect of a free surface
at the ROI, a “buffer zone” consisting of a soft material is added in between periodic
repetitions of the microstructure to get a a “thick film” behaviour.

Microstructure Variety Reduction To interrogate the influence of grains within a bulk
polycrystal that are located some distance from a (planar) ROI, taken as the plane
z = 0.5, the height of the periodic grain structure introduced in section 3.2.2 is
gradually reduced to h = 0.9, 0.8, . . . , 0.3.2 The periodic Voronoi tessellation then
includes only seed points within Δz < h/2 from z = 0.5, thus progressively altering
the neighbourhood around the central x–y plane. This results in a reduction of the
length of the periodically repeated microstructure in z-direction. Additionally, the
limit case of keeping only the ROI layer of h = 0.01 (i.e. assuming columnar grains
due to the periodic boundary conditions) is investigated. No buffer zone is applied,
since bulk polycrystal properties are of interest in this case. Figure 3.22 presents
exemplary microstructures of heights h = 0.8, 0.5, 0.3, 0.01 for all three structures with
fixed martensite grain fraction nmart = 0.2 (corresponding to center row in fig. 3.20).
As it can be seen from the grain count for all microstructures given in table 3.6, the
described procedure results in a subsequent reduction of variety of the periodically
repeated VE.

Table 3.6: Grain count of the microstructures with reduced variety.

z 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.01

A 355 318 284 247 195 157 123 79
B 358 305 263 225 185 153 106 72
C 362 316 276 232 198 158 111 73

Modelling Details

The VEs were subjected to loading in x-direction, i.e. the ROI is deformed in-plane,
commensurate with the surface of a deformation sample. For the grain orientation
variation and grain shape variation a constant true strain rate of Lxx = 10−3 s−1 and
Lyy = −10−3 s−1 was applied. Since the soft layer mimics a free surface, no stress
boundary conditions are given and the remaining components of F remain constant.
After a loading time of 46.0 s, the final deformation gradient prescribing plane strain is

1 400 rvM3 4 π/3 = 1.
2 h < 0.3 resulted in changes of the grain structure slice at z = 0.5 and was therefore not considered.
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h Microstructure
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0.5
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0.01

Figure 3.22: Microstructure variety reduction. The height h of the initial mi-
crostructures with the central x − y plane as ROI (indicated by the bright grey slice)
is gradually reduced while periodicity in z direction is retained. The variant with
nmart = 0.2, indicated by black color is shown here. For IPF legend see fig. 3.19.

F =

⎡
⎣1.047 0.000 0.000

0.000 0.955 0.000
0.000 0.000 1.000

⎤
⎦.

For the microstructure variety reduction, a constant engineering strain rate of
Ḟxx = 10−3 s−1 was applied. The deformation gradient in y- and z-direction was
adjusted such that the average Piola–Kirchhoff-stress in these directions vanished.
This plane stress boundary condition was applied for 82.0 s, resulting in the deformation
gradient

F =

⎡
⎣1.082 ∗ ∗

0.000 ∗ ∗
0.000 0.000 ∗

⎤
⎦,

where the asterisk “∗” indicates a stress free component for P .
As discussed in comparison of spectral solver variants, the direct variational formu-

lation was selected as the de-facto standard approach in this thesis. However, for the
columnar microstructures (z = 0.01) used in microstructure variety reduction, only
the polarisation field-based scheme was able to converge to the desired strain level.
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Results and Discussion

In the following, the results—i.e. the stress and strain partitioning—of the grain orien-
tation variation, the grain shape variation, and the microstructure variety reduction
are given. For the analysis, the absolute difference Δp is defined as Δp := p − pref

for p ∈ σvM,εvM where the reference value is the one obtained from the unaltered
microstructure. Additionally, the relative difference is calculated as Δp/pref .

For all three simulation studies, the spatially resolved equivalent von Mises stress
(σvM) and strain (εvM) maps on the ROI of one selected microstructure variant A, B,
or C are given together with the relative change of these quantities for the altered
microstructures in figs. 3.23, 3.26 and 3.29 To visualize the large difference of stress
and strain in the soft ferrite and the hard martensite, a logarithmic scale is used for
the results of the unaltered microstructure.

Additionally, the data is averaged over all three microstructures and plotted in
“heatmaps” where dark values represent more data points. For a more quantitative
analysis of the partitioning, the absolute strain difference is plotted against the
absolute stress difference and shown separately for ferrite and martensite (see figs. 3.24
and 3.27). Additionally, the influence of the phase boundary on the strain difference is
investigated in figs. 3.25, 3.28 and 3.31. The distance (in pixel, px) of a a material
point with martensite behaviour to the next material point with ferrite behaviour in
the undeformed configuration is denoted as dferrite. Similarly, for a ferritic point the
distance to the next point with martensitic behaviour is called dmartensite.

Stress and strain partitioning of microstructure A at z = 1.0 resulting from the
grain orientation variation is shown in fig. 3.23. It can clearly be seen that the strain
partitioning (see left side of fig. 3.23) is heavily influenced when the microstructure is
modified at a distance of Δz = 0.3 to the surface. Evenly distributed over the ROI,
the values of εvM are above or below the values for the initial microstructure, with
extreme values of ±1.0, i.e. ±100 %. The stress distribution changes in a locally more
concentrated way with lower extreme values ranging from −60 % to 60 % as shown in
fig. 3.23 (right side). For both, stress and strain, no significant influence can be seen
for the modification of the VE at Δz = 0.5, and 0.7.

The joint data of all three variants together, given in fig. 3.24, confirms the ob-
servations made for microstructure A: The influence of a grain orientation change is
spatially confined to a narrow zone below the ROI and largely independent of the
content of the hard phase. For distances Δz ≥ 0.5, almost no influence on the ROI
can be observed. Since the average diameter size is approximately 0.13, it can be
concluded the zone of influence is confined to a zone of three grains. This is slightly
deeper than the zone of influence in single phase polycrystals obtained by Zeghadi
et al. (2007b).

Inspecting the dependence of ΔεvM/εref
vM on the distance to a phase boundary in

fig. 3.25 shows that the points close to such a phase change are much stronger affected
than the ones located in the phase center. This probably explains why the zone of
influence is larger than in the case of polycrystals without a second phase: The strong
stress and strain partitioning among the phases has a longer range of interaction than
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Figure 3.23: εref
vM (left) and σref

vM (right) of microstructure A at z = 1 shown together
with ΔεvM/σref

vM (left) and ΔσvM/σref
vM (right) at Δz = 0.3, 0.5, 0.7 for nmart = 0.1, 0.2,

0.4 resulting from the grain orientation variation.

the weaker partitioning among differently oriented grains in a single phase material.
The left side of fig. 3.25 also reveals that the zone of influence in ferrite is not only
confined to the phase boundary, indicating that e.g. grain boundaries from ferrite
to ferrite are also zones that are influenced above average by a modification of the
microstructure.

Stress and strain partitioning resulting from the grain shape variation are shown
for the ROI of microstructure B in fig. 3.26. The influence when the microstructure
is modified at a distance of Δz = 0.3 to the surface is—as expected—the strongest.
Comparing strain (see left side of fig. 3.26) and stress (see right side of fig. 3.26)
shows, like for the grain orientation variation, the relative change in stress is more
severe than the one in the strain. Additionally, the influence is more pronounced for
higher martensite contents. Looking at fig. 3.27 clearly shows that this is true for the
combined results of all microstructure variants.

From a comparison of the results of the grain orientation variation to the grain
shape variation, three observations can be made:

1. The effect of the grain orientation variation is weaker than the effect of the grain
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Figure 3.24: ∆σvM plotted over ∆εvM in ferrite (left) and martensite (right) at
∆z = 0.3, 0.5, 0.7 for nmart = 0.1, 0.2, 0.4 resulting from the grain orientation
variation.
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Figure 3.25: ∆εvM/ε
ref
vM in ferrite (left) and martensite (right) plotted over

dmartensite and dferrite, respectively, at ∆z = 0.3, 0.5, 0.7 for nmart = 0.1, 0.2, 0.4
resulting from the grain orientation variation.
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Figure 3.26: εref
vM (left) and σref

vM (right) of microstructure C at z = 1 shown together
with ΔεvM/σref

vM (left) and ΔσvM/σref
vM (right) at Δz = 0.3, 0.5, 0.7 for nmart = 0.1, 0.2,

0.4 resulting from the grain shape variation.

shape variation at the same distance Δz to the ROI.

2. The effected zone of the grain shape variation is deeper than for the grain
orientation variation.

3. The effects of the grain shape variation depend—in contrast to the effects of
the grain orientation variation—on the martensite volume fraction. A higher
martensite volume fraction correlates with a more pronounced effect on the stress
and strain partitioning.

Finally, the results of the microstructure variety reduction are presented. Since
they are obtained with a different load case and at a higher strain level, the scale
bars differ in comparison to the results of the first two simulation series. Stress and
strain partitioning are shown for microstructure A in fig. 3.29 at z = 0.5. Relative
differences in strain (ΔεvM/εref

vM) are higher than 250 % (left side of fig. 3.29) and
relative differences in stress (ΔσvM/σref

vM) are higher than 100 % (right side of fig. 3.29)
for the height reduction to h = 0.3. As it can be deducted from the stress and strain
partitioning of the unaltered microstructure (top row), very high ΔεvM/εref

vM relative
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Figure 3.27: ∆σvM plotted over ∆εvM in ferrite (left) and martensite (right) at
∆z = 0.3, 0.5, 0.7 for nmart = 0.1, 0.2, 0.4 resulting from the grain shape variation.
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Figure 3.28: ∆εvM/ε
ref
vM in ferrite (left) and martensite (right) plotted over

dmartensite and dferrite, respectively, at ∆z = 0.3, 0.5, 0.7 for nmart = 0.1, 0.2, 0.4
resulting from the grain shape variation.
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Figure 3.29: εref
vM (left) and σref

vM (right) of microstructure B at z = 0.5 shown to-
gether with ΔεvM/σref

vM (left) and ΔσvM/σref
vM (right) for h = 0.3, 0.5, 0.7 and 0.9 and

for nmart = 0.1, 0.2, 0.4 resulting the microstructure variety reduction.

strain changes occur mainly in the martensite. Looking at the definition for the
absolute change in strain, ΔεvM := εvM − εref

vM, it becomes clear that the division
by small small εref

vM values in martensite causes these extreme values for ΔεvM/εref
vM.

This also explains, why the absolute value of ΔεvM/εref
vM for positive ΔεvM/εref

vM is
much higher than for negative ΔεvM/εref

vM: Both values, εvM and εref
vM, are positive

by definition resulting in a lower bound of 1.0 for ΔεvM/εref
vM. These observations

show that expressing the differences in terms of relative changes is meaningless for the
resulting extreme differences. Therefore, to visualise the influence of the reduction
of the microstructure variability unbiased by the values of εref

vM and σref
vM, ΔεvM and

ΔσvM of microstructure A are plotted in fig. 3.30 to avoid the artefacts introduced
when calculating their relative counterparts. From the left figure in fig. 3.30 it can be
seen that ΔεvM changes significantly in the ferritic regions. Especially for nmart = 0.4
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Figure 3.30: εref
vM (left) and σref

vM (right) of microstructure A at z = 0.5 shown to-
gether with ΔεvM (left) and ΔσvM (right) for h = 0.01, 0.3, 0.4 and for nmart = 0.1,
0.2, 0.4 resulting the microstructure variety reduction.

and h = 0.01, the localised deformation bands in ferrite are obvious. They even lead
to a clearly visible distortion of the geometry when compared to higher values of h or
lower values of nmart. Most of the martensitic regions that are also in the unmodified
microstructures only slightly deformed, change their stain level much less pronounced.
However, looking at the right side of fig. 3.30 reveals that the stress level in these
grains is often heavily changed.

As it can be seen from the left side of fig. 3.31, in the case of a columnar grain
structure and nmart = 0.4 the ferrite is strained much more than in the reference
set-up. The right side of fig. 3.31 shows that the martensite also shows significantly
different deformation behaviour in that case. Interestingly, this effect is much less
pronounced for lower nmart and/or even a small surrounding microstructure (h ≥ 0.3)
in the third direction. The dependence on the martensite content is most likely related
to the connectivity of the martensitic grains: For small, isolated martensitic grains the
influence on the strain partitioning is lower than for connected skeletons that force
specific ferritic regions to adopt most of the prescribed strain.

The conducted study underlines—in accordance with the findings of Zeghadi et al.
(2007a,b)—the importance of subsurface microstructural features on the observed
stress and strain partitioning. Moreover, the presented results show that an increased
heterogeneity in the local response also increases the volume that is influenced by a
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h Martensite fraction Δz Martensite fraction

Figure 3.31: ΔεvM/εref
vM in ferrite (left) and martensite (right) plotted over

dmartensite and dferrite, respectively, for h = 0.01, 0.3, 0.4 0.5 and for nmart = 0.1,
0.2, 0.4 resulting from themicrostructure variety reduction.

microstructural change. Since the stress and strain partitioning is mainly governed by
the phase distribution, the crystallographic orientation of the subsurface microstructure
is of less importance than the phase distribution. For a phase contrast similar to the
ones found in DP steels, as a rule-of-thumb, the microstructure that is more than 3
grains away can be considered to be of minor importance for the observed stress and
strain partitioning on a surface. However, the more complex microstructure of real
DP steels with connected martensitic skeletons between ferritic grains might result in
a larger zone of influence.

The assumption of columnar grain structures introduces a strong bias, as the stress
and strain partitioning becomes stronger in the case of a material consisting of a hard
and a soft phase. This renders especially the prediction of microstructure damage
effects difficult in 2D simulations when a focus is laid on predicting the exact location
of a damage incident.

The following procedure to get a statistically representative microstructure response
is proposed for obtaining microstructure–property relations in multi-phase materials:
Starting from a 2D ROI, several 3D microstructures variants having different subsurface
microstructure and a thickness of 3 times the grain diameter are created in the
spirit of Zeghadi et al. (2007a,b). For a very heterogeneous response (caused by a
strong percolation of the phases, e.g. for higher martensite content), an even thicker
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microstructure might be needed. However, for the additional subsurface microstructure
further away, consideration of only the phase distribution and not the orientation of
the individual grains introduces sufficient accuracy. This allows using a fast isotropic
material model. The results of the stress and strain partitioning averaged over
all variants finally allow obtaining a microstructure–property relationship that is
statistically representative for regions with similar features like the ROI.

3.2.3 Pattern Formation in Polycrystalline Ice under Cyclic Loading
As discussed in section 3.1.2, collaborative phenomena, i.e. strain localisation/shear
bands ranging over several grains, are widely observed in polycrystalline materials.
The macroscopic behaviour of single-phase polycrystalline aggregates is significantly
influenced by these phenomena. It is known that the formation is strongly influenced
by the local microstructure and the imposed local stress and strain state. In the case
of dynamic loading, i.e. when heat distribution is slow compared to the mechanical
loading, the zones that—for whatever initial reason—deform slightly more, soften due
to the locally generated heat and in turn continue to deform even more (Guduru et al.,
2001). In controlled experiments, following Kalthoff et al. (1988), a notch can play the
role of the initial strongly deforming zone. The conditions for the formation of the
strain localisation in undamaged microstructures and for slow deformation velocities
are more difficult to investigate and are subject of the following study. As it will be
shown here, significant deformation patterning can also be observed in the case of
isothermal, cyclic loading of a polycrystalline material.

The challenges in understanding shear bands are closely related to difficulties in
developing well-designed experiments. More precisely, systematic experimental studies
where only one parameter, e.g. in-grain-scatter, overall texture, loading rate, etc., is
varied, are difficult to perform and (semi-)analytical solutions are not able to capture
the anisotropy inherent to polycyrstalline materials (Coleman et al., 1985). For this
reasons, localisation effects are a common playground for mechanical simulations:

• Li et al. (2000) used a mesh-free method to study the effect of voids on shear
localisation with an isotropic material model.

• Jia et al. (2012a,b) performed systematic studies on simplified structures. In
addition to CP formulations, a constitutive law originally developed for metallic
glasses was used, since shear banding is their primary deformation mechanism.

• Standard CP was used by Sluys et al. (2000).

• Rezvanian et al. (2006) used a dislocation density based model.

All these simulations are using either a simplified material model or a rather small
aggregate and hence where not able to capture localisation evolving situations similar
to the real, polycrystalline state. This is due to the fact that the performance of the
used simulation techniques (i.e. usually FEM) does not allow the simulation of large
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aggregates in combination with complex material models that are needed. Hence, the
capabilities of the spectral method are perfectly suited to perform systematic studies
on the evolution of shear bands.

A prominent example of large localisation phenomena is the Jupiter moon Europa.
The mechanical loading of the moon’s surface is motivation for the presented work.

Surface Structure and Conditions of Jupiter Moon Europa

Europa is one of the several moons of Jupiter. It belongs to the group of the large
Galilean moons and with a diameter of 3120 km is of similar size like Earth’s moon
(Greeley et al., 1998a). Surface temperatures on Europa can fall below 76 K during
night and might reach 132 K during day. In the higher albedo1 areas of ice, only up to
110 K can be expected during day.

Europa’s core consists of stone or metal, and is separated by either ice at temperatures
above the surface temperature or liquid water (Greeley et al., 1998a) from the outer
layer of cold water ice. The stresses acting on this outer shell caused by tides are
outlined by Greenberg et al. (1998) and Kattenhorn (2002) and will be used in a
simplified form for the simulation that is given later on. These stresses are believed
to cause—or at least to contribute to—the development of surface features observed
on Europa (see fig. 3.32). The formation of the observed localisation phenomena is
discussed by Hoppa et al. (1999). According to Greeley et al. (1998b) and Kattenhorn
(2002) cracking or fracture is indicated from pictures taken by the Galileo spacecraft.
However, as the mentioned studies show, the reasons for the evolution of the bands
are not purely mechanical but also the activity of the core might play a role (Greeley
et al., 1998a) (see also Bierhaus et al., 2005 for a discussion on craters on Europa).
Thus, CP simulation on the ice shell on Europa can only be a simplification of the
real circumstances that, however, might give hints on the development of the observed
bands at the level of individual grains. Figure 3.32 shows the focus of this study, i.e.
it is based on the assumption that the localisation phenomena raise from the scale of
several grains to form features that span over the whole moon

Lattice Structure of Water Ice

Extrapolation of fig. 3.33 shows that for the conditions on Europa (0.1 μPa, 76 K to
110 K see McGrath et al., 2009 and Carlson et al., 2009) out of the 15 known solid
phases for water ice, the hex Ih and the cubic Ic structure might exist. Experimental
results indicate the nucleation of cubic ice in pure water and acidic solutions at
low pressures (Murray, 2008; Murray et al., 2006). However, molecular dynamics
simulations (Moore et al., 2011) and recent experiments (Malkin et al., 2012) show that
the so called cubic ice also contains high fractions of the (stable) hex phase. From the
mixture of the two phases Thurmer et al. (2013) conclude that even at temperatures
below 170 K Ih is the stable phase—despite the fact that it has never be observed at

1 Albedo is the reflection coefficient or “whitness”.
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Figure 3.32: Focus of the study in comparison to the Jupiter moon Europa. For
copyright information see appendix C.

these conditions—and Ic will eventually transform to Ih. Although some uncertainty
remains, following Carlson et al. (2009) the assumption of a hex structure (probably
following a phase transformation after some decades) seems to be reasonable for the
ice found on Europa’s surface1.

Modelling Details

As outlined before, the ice on Europa is assumed to exist in the hex Ih structure. Values
for the elastic constants of hex ice depending on the temperature are given for 133.15 K
to 273.15 K by Dantl (1968). More accurate measurements based on Brillouin

spectroscopy were done by Gammon et al. (1983) at 257.15 K. Parameswaran (1987)
combined the two datasets to derive a formula for temperature dependent moduli
which is valid from 77 K to 273.15 K. The c/a ratio of the hex structure is close to the
value of 1.633 for a closely packed structure (1.628 according to Montagnat et al., 2013;
1.629 according to Michel, 1978). It should be emphasised, even though Ih ice is not a
metallic hex structure but rather consists of Hydrogen and Oxygen, the assumption of
a hex structure deforming by slip is frequently used in modelling (Montagnat et al.,
2013). According to Montagnat et al. (2013) plastic deformation of ice in the range of
possible strain rates (1 × 10−12 s−1 to 1 × 10−6 s−1) is due to ductile dislocation creep.
The following slip systems are taken into account: 3 basal {0 0 0 1}〈1 1 2 0〉, 3 prismatic
{0 1 1 0}〈2 1 1 0〉, and 6 pyramidal {1 1 2 2}〈1 1 2 3〉. Twinning is usually not observed
in ice and hence not modelled. The employed parameters for the phenomenological

1 Dropping the idea discussed in NASA Space Science News (1999) that hex ice is an indicator for a
past warmer period on Europa.
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Figure 3.33: Phase diagram of water.

material model are given in table 3.7. The simulation is performed using the Lagrange

multiplier field-based scheme.
A model microstructures consisting of 400 grains is created using a standard

Voronoi tessellation approach on a 1000 × 1000 pixel 2D VE. The modelling as
a 2D microstructure was chosen to reflect the “thin shell” character of the outer ice
shell on Europa that is floating on a softer zone as outlined in section 3.2.3. Similar to
the basal texture of hex Mg in the study on strain localisation in magnesium, a strong
basal texture is assumed. More specific, a fiber-texture with a half-width scatter of
15° is selected. The c-axis is aligned with the third (periodically repeated) dimension
of the columnar grains and the rotation around this axis is randomly chosen for each
grain, i.e. it will undergo severe re-orientation during loading since the c-axis tend to
align with the (changing) loading direction. In addition, an in-grain scatter of 3° is
added randomly to all points. The IPF of the microstructure is shown in fig. 3.34.

The loading is chosen, such that during one tidal cycle a strain of 10 % is reached.
Therefore, a uniaxial strain rate of 6.52 × 10−7 s−1 was applied for 153 400 s, followed
by a change of direction. The applied deformation gradient rates read as:
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Ḟ1 =

⎡
⎣6.52 × 10−7 0.00 0.00

0.00 ∗ 0.00
0.00 0.00 0.00

⎤
⎦, Ḟ2 =

⎡
⎣ ∗ 0.00 0.00

0.00 6.52 × 10−7 0.00
0.00 0.00 0.00

⎤
⎦

where the asterisk “∗” indicates a stress free component for P . The loading was
applied in 8 cycles, i.e. the microstructure was deformed to 10 % strain in horizontal
direction, followed by a loading in vertical direction that approximately restores the
initial quadratic shape eight times.

Results and Discussion

Despite the simple se-tup and the isothermal modelling approach, the cyclic loading
results in a strong strain localisation. In fig. 3.35 εvM is shown at maximum strain in
initial horizontal loading direction for the 8 simulated cycles. The figures show that
with increasing cycle number the strain pattern becomes stronger. The regions of
high strains are confined, while areas with low strain form long bands that might be
characterised as “negative” shear bands. In connection with the strain patterning, a
significant out-of-plane deformation is observed (not visible in the figure). Note that
due to the selected BCs, out-of-plane deformation is only prohibited on average, but
might exist locally.

In a plot similar to fig. 3.35, fig. 3.36 shows the sum of the slip on all 12 fcc slip
systems evolving with the cyclic loading. In contrast to εvM, which can go back to zero,
this quantity is monotonically increasing over loading in x and y direction by virtue of
the chosen plasticity model. A patterning can also be observed in fig. 3.36. However,
comparing both figures, fig. 3.35 and fig. 3.36, clearly shows that the regions of high εvM
and of high shear in general do not coincide. The different behaviour is investigated in
more detail in a region located at the upper left corner of the microstructure shown
in fig. 3.37a, where two positions are selected: Position 1, having a high total shear

Figure 3.34: IPF of the ice microstructure || to observation plane 3. Initial loading
is in horizontal direction 1.
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Table 3.7: Material parameters for hexagonal ice.

(a) Elastic properties.

Property Value Unit

C11 16.1 × 109 Pa
C33 17.2 × 109 Pa
C44 3.4 × 109 Pa
C12 8.4 × 109 Pa
C13 7.2 × 109 Pa

(b) Dislocation slip.

Property Value Unit

ξ0,basal 11.0 × 106 Pa
ξ∞,basal 13.0 × 106 Pa
ξ0,prism 297.0 × 106 Pa
ξ∞,prism 310.0 × 106 Pa
ξ0,pyr 429.0 × 106 Pa
ξ∞,pyr 440.0 × 106 Pa

but low εvM, and position 2, showing the opposite behaviour. The evolution of both
quantities over the cycles is given in in fig. 3.37b. In this plot it can be seen that the
evolution in position 1 follows the cycles, particularly εvM is increasing and decreasing
with the cyclic loading and the total shear is growing more or less rapidly with the
cycles. Position 2 does not show such a behaviour. Both quantities are growing
independent of the loading directing, but εvM faster than in position 1 and the total
shear at a lower rate. This indicates that position 1 is in a crystallographic more
favorable orientation for in-plane deformation than position 2. As a result, εvM follows
the loading back and forth, causing high slip activity. In contrast, position 2 is initially
strained to a higher level, and with fewer shear is able to compensate the applied
strain and maintain this high level of equivalent shear.

In summary, the results show that even a rather simple, isothermal model can predict
complex pattern formation. To see this behaviour, a high resolution, a large number of
differently oriented grains, and cyclic loading seem to be beneficial. Since this requires
fine spatial and time resolution, the spectral solver is especially well suited to tackle the
question of shear band initiation. Future simulations using the presented approach can
be used to study in detail the effects of grain shape and size distribution as discussed
in section 3.2.1, the initial fiber texture scatter, the initial in-grain orientation scatter,
and the loading amplitude on the observed patterning. However, the use of the simple
phenomenological material model for cyclic loading should be critically scrutinised.
Specifically, the assumption of monotonous hardening is physically not justified and
its influence on the pattern formation is not clear yet. After selecting a constitutive
description with proven suitability, the planned implementation of thermo-mechanical
coupling into DAMASK will enable investigating the differences between adiabatic
shear bands and the pattern formation observed here.
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εvM0.0 12.0

Figure 3.35: εvM at 10 % strain in horizontal direction for cycle 1. . . 8 from upper
left to lower right.

12∑
i=1

γi 0.0 12.0

Figure 3.36: Sum of the total shear at 10 % strain in horizontal direction for cycle
1. . . 8 from upper left to lower right.
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(a) ROIs, showing εvM. The
surrounding is colored accord-
ing to the sum of the total
shear. For color interpretation
see figs. 3.35 and 3.36.

(b) Sum of the total shear and εvM shown
for both positions.

Figure 3.37: Selected ROIs on the ice microstructure.





4 Summary and Outlook
In this thesis it is outlined on several examples, how the application of crystal plasticity
(CP) simulations helps to understand the micro-mechanical behaviour of crystalline
materials. Special focus is laid on exploiting the capabilities of the CP approach when
applied to highly resolved microstructures, which is enabled by a fast and efficient
spectral solver (see section 2.3). The improved performance of this numerical approach
when using alternatives to the original fixed-point solution scheme allows increasing the
resolution of the microstructures beyond typical values (see, e.g., Herrera-Solaz et al.,
2014) to gain a more detailed view on grain level mechanics. It also enables the spectral
approach to handle heterogeneous materials with large contrast in stiffness (or strength)
and gives the opportunity to tackle the simulation of, e.g., dual phase (DP) steels.
In the following, the outcomes of the presented simulations are briefly summarised,
followed by an outlook on future work that allows enlarging the possibilities of CP
simulations further.

The coupled experimental–numerical analyses of DP steels and Magnesium (Mg)
show that for highly resolved microstructure discretisations even the comparably simple
phenomenological material model is able to predict a behaviour in good agreement
with experimental observations. As shown in section 3.1 “Real Microstructures”, a
well-designed simulation series can complement experimental investigations to achieve
a better understanding of the experimental results. In subsection 3.1.2 “Strain Locali-
sation in Magnesium”, the experimentally unobtainable data was the exact loading
condition of the region of interest (ROI). The simulated results allows deducting
the global and local stress state of the ROI, which finally enables to interpret the
experimental observations on the shear band formation. The simulation of realistic
DP steel microstructures in subsection 3.1.1 “Strain and Stress Partitioning in Dual
Phase Steel” recall the complex interplay between crystallographic orientation, grain
shape and phase distribution. As a result of these observations it can be concluded
that a rather big volume element (VE) is required to serve as a representative volume
element (RVE). The statistical analysis of the obtained data confirms, in agreement to
the experimental observations that the spatial strain distribution is rather insensitive
to the strain level but strongly depends on the neighbourhood. The investigation also
reveals that the mechanical behaviour of the ferritic grains that depends on grain size,
shape and orientation as well as on chemical composition and heat treatment, is more
complex than expected and might be the key factor to tailor DP steel properties. In
contrast, the sensitivity analysis regarding the influences of the strength of martensite
reports its less pronounced influence on the stress and strain partitioning.

In subsection 3.2.2 “Subsurface Effects in Simplified Dual Phase Steel”, the influence
of the subsurface microstructure on the observed local stress and strain values on a
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2D observation plane is investigated. The dependence of the region of influence on
the strain heterogeneity that is coming from the mechanical contrast between ferrite
and martensite is quantified. Comparing the differences in the observed behaviour
when changing the underlying microstructure to the differences when using a signifi-
cantly modified constitutive behaviour—as it was done for the martensitic phase in
section 3.1.1—clearly shows that the details of the constitutive model have a weaker
influence. This justifies the use of the fast phenomenological material model, although
more physical correct CP formulations are available in the Düsseldorf advanced ma-
terial simulation kit (DAMASK). An additional advantage of the phenomenological
material model is the possibility to obtain the exact material parameters directly on
the material of interest. As shown in section 3.1.1, this process is challenging even for
a plain material point model and would require much more effort for complex models
with a higher number of parameters.

The investigation in subsection 3.2.1 “Comparison of Microstructure Generation
Approaches” proves that the use of the fast standard Voronoi tessellation does not
introduce a strong bias on the observed stress and strain partitioning in single phase
materials at the continuum level. Since the micro-mechanics of DP steels strongly
depend on the phase distribution, it can be assumed that the standard Voronoi

tessellation can also be used without restriction for CP simulations of DP steels.
In combination with the good agreement of experimentally observed and simulated
behaviour, this motivates to use artificial DP microstructures to predict the average
response of different DP grades when an RVE is three dimensional and microstructure
of sufficient size is used. The fast spectral solver is finally the key factor in exploiting
these findings to set up a virtual laboratory to predict macroscopic properties—either
of existing microstructures to replace time-consuming and expensive experimental
investigation or of artificially designed microstructures to investigate guidelines for the
design of improved alloys.

The investigation on surface structure and conditions of Jupiter moon Europa
in section 3.2.3 shows that the phenomenological material model is even capable
of predicting complex patterning phenomena. However, in the case of strain-path
reversion, the results might be strongly biased by the unrealistic assumption of
monotonous hardening and the soundness of the observed partitioning needs a closer
inspection. This example outlines also that the successful interpretation of simulation
results requires taking carefully into account the simplifications made in the simulation
set-up to realistically estimate the prediction ability of the performed simulation. In
this context, it is of big importance to realise that usually the weakest point in the
simulation set-up determines its prediction quality. As an example, investigation of
strain partitioning in complex materials using a 2D model on the one hand gives deep
insight into the mechanisms leading to its macroscopic behaviour. On the other hand,
the “weakest link” is the 2D assumption, which cannot be overcome by e.g., using a
better material point model.

A primary point of future work on improving DAMASK is the elimination of such
“weakest links” by the incorporation of additional physical effects besides plasticity into
the framework of CP. This includes temperature, damage and fracture, recrystallisation,
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and phase transformation. The importance of these additional effects becomes clear
when looking at the limitations of the DP modelling presented in subsection 3.1.1
“Strain and Stress Partitioning in Dual Phase Steel”. Initially, some grains have an
austenitic lattice structure that is currently treated as martensite with good reason.
The experimental observations also show early damage incidents that—even though
they do not lead to fracture—strongly re-partition the strain. It can be assumed that
these effects have a much higher impact on the predicted micro-mechanical behaviour
than the use of improved material point models, like a dislocation density based model
or the incorporation of non-Schmid effects. Hence, the “weakest link” is not the
description of plasticity, but rather the omission of the above mentioned further effects.

Since damage and/or the initialisation of recrystallisation is happening at the scale
of—or even below—the material point level, it is outmost importance to prevent the
simulation technique from introducing artefacts even at single computation points. In
the context of the spectral solver, the current implementation needs to be improved
by effectively filtering the artefacts associated with the Gibbs phenomenon for the
successful implementation of such effects.

Altogether, the results show that DAMASK and especially the spectral solver enable
to perform high-resolution CP simulations that help to understand micro-mechanics
of crystalline materials. The direct takeover of data coming from measurements on
regular grids allows an easy coupling from experimentally obtained microstructures.
This renders the presented simulation approach perfectly suited for the simulation
of highly resolved three dimensional data sets obtained with the help of advanced
neutron diffraction devices or by serial sectioning analysis with a scanning electron
microscope.





A Scheme of Notation
The scheme of notation mostly in accordance with Roters et al. (2010a) and here
reproduced from this book. As a general scheme of notation, vectors are written as
boldface lowercase letters (e.g. a, b), second-order tensors as boldface capital letters
(e.g. A, B), and fourth-order tensors as blackboard-bold capital letters (e.g. A, B).
For vectors and tensors, Cartesian components are denoted as, respectively, ai, Aij

and Aijkl. The action of a second-order tensor upon a vector is denoted as Ab (in
components Aijbj , implicit summation over repeated indices is used unless specified
otherwise) and that of a fourth-order tensor upon a second order tensor is designated
as AB (AijklBkl). The composition of two second-order tensors is denoted as AB
(AikBkj). The tensor (or dyadic) product between two vectors is denoted as a ⊗ b
(aibj). All inner products are indicated by a single dot between the tensorial quantities
of the same order, e.g., a · b (aibi) for vectors and A · B (AijBij) for second-order
tensors. The cross-product of a second-order tensor A with a vector a, denoted by
A×a, is a second-order tensor defined in components as (A×a)ij = Aik al εlkj , where
ε is the Levita–Civita permutation matrix. The transpose, AT, of a tensor A is
denoted by a superscript “T”, and the inverse, A−1, by a superscript “−1”. ||A||2 and
||A||F designate the spectral norm and Frobenius norm of matrix A, respectively.
Additional notation is introduced where required.
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B DAMASK Performance
The performance of the DAMASK is presented here for a selected set of revisions,
starting from revision 1439 (Apr. 17 2012) and ending with 3990 (Mar. 12. 2015).
The total runtime (wall time) employing 1 or 2 threads and the memory consumption
when running the polycrystal example provided with DAMASK at a resolution of 32
× 32 × 32 pixel is measured with the help of the Linux time command. Bechmarks
are performed on an Intel Xeon E5-2687W processor with 3.10 GHz, running Ubuntu
14.0.2. Using the taskset, CPU cores with ID 1 or 1 and 3 are selected, for the 1 or
2 thread simulations, respectively. The sample consists of 20 grains with aluminium
properties for the phenomenological material model. It is loaded in uniaxial tension
at a rate of 1.0 × 10−3 s−1 for 70 s following the example load case provided with
DAMASK. In contrast to the example load case, no results are written out to minimize
the influence of storage device performance on the measured run time.

The compilers used are GNU fortran in version 4.9.2 and Intel Fortran 14.0.2. The
fastest Fourier transform in the west (FFTW) is used in version 3.3.4. The portable,
extensible toolkit for scientific computation (PETSc) is used in versions 3.3-p7, 3.4.5
(starting with DAMASK revision 2797), and 3.5.3 (starting with DAMASK revision
3477), respectively. Standard compiler optimisation and the GNU fortran compiler are
used for all revisions but the last two, where the strongest optimisation was used for
both compilers.

In order to compile DAMASK using GNU fortran in version 4.9.2, code of several
revisions needed a slight modification to confirm with the standard checks imposed by
the compiler. Additionally, the calculation of the convolution operator Γ was corrected
in revisions before 1975.

The following configure options have been used:

• FFTW for PETSc version 3.3-p7 and 3.4.5:
--enable-shared --enable-threads --disable-fortran CC=gcc

• PETSc version 3.3-p7 and 3.4.5:
--with-fc=gfortran --with-cc=gcc --with-cxx=g++ --with-mpi=0
--with-c2html=0 --with-x=0 --with-ssl=0 --with-debugging=0
COPTFLAGS=-O2 CXXOPTFLAGS=-O2 FOPTFLAGS=-O2

• PETSc version 3.5.3 standard set-up:
--with-fc=gfortran --with-cc=gcc --with-cxx=g++
--with-c2html=0 --with-x=0 --with-ssl=0 --with-debugging=0
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COPTFLAGS=-O2 CXXOPTFLAGS=-O2 FOPTFLAGS=-O2
--download-fftw --download-openmpi

• PETSc version 3.5.3 fast set-up GNU fortran:
--with-fc=gfortran --with-cc=gcc --with-cxx=g++
--with-c2html=0 --with-x=0 --with-ssl=0 --with-debugging=0
COPTFLAGS=-O3 CXXOPTFLAGS=-O3 FOPTFLAGS=-O3
--download-fftw --download-openmpi

• PETSc version 3.5.3 fast set-up Intel fortran:
--with-fc=ifort --with-cc=icc --with-cxx=icpc
--with-c2html=0 --with-x=0 --with-ssl=0 --with-debugging=0
COPTFLAGS=-O3 CXXOPTFLAGS=-O3 FOPTFLAGS=-O3
--download-fftw --download-openmpi

Table B.1: DAMASK revision history of selected changes with expected increase
(+,+ +,+ + +) or decrease (-,- -,- - -) of runtime performance.
revision change expected runtime

influence
3961 changed intermediate configuration kinematics -
3886 introduced intermediate configuration kinematics

to jacobian
-

3869 introduced intermediate configuration - -

3709 switched integration order of FeFpFi +

3654 new decomposition FeFpFi -
3640 cleaner damage interface +
3612 introduced intermediate configuration -

3576 helper functions for multiphysics +
3568 removed old temperature handling +
3534 analytic tangent introduced + + +

3496 multipysics introduced -
3484 new homogenization state +
3460 changed to PETSc 3.5.x
3436 stable new state

3313 no Cauchy stress calculation (pullback) +

3250 introduced new state structure +

3020 introduced dummy homogenisation for direct CP
simulations

+

3018 reduced function calling overhead for non-local mod-
els

+

continued . . .
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. . . continued
rev change expected

influence

2890 wrong indices in tangents - - -
2888 convergence check simplified
2887 convergence settings in IP wise calculation
2865 tangent of Lp corrected +
2802 “enums” in homogenisation +

2799 changed to PETSc 3.4.x
2753 introduced enumerators + +

2691 removed temperature integration +
2682 removed dummy functions +

2577 dynamic simulations introduced

2366 isostrain homogenisation more complex -

2283 added “public”, “private”, and “protected” state-
ments

+

2223 min-max average instead of volume average for D

2215 reorganised CPFEM calculation modes

2190 “p-intvec” -
2144 more involved reading from files
2136 corrected IP coordinate calculation +
2127 hardening behaviour of phenomenological material

model corrected

2099 bypassing calls to CPFEM module +
2093 added some “pure” statements +
2088 non-Schmid-behaviour -
2085 introduced lattice structures (keyword comparison) - - -

1916 improved handling of IP coordinate calculation +

1871 introduced some “forall” statements +
1862 simplified stress integration +
1855 direct solver instead of doing matrix inversion + + +
1834 modified saturation behaviour of phenomenological

material model
1823 use of compressed geometry files
1809 improved Schmid matrix calculation

1776 marked some variables as “protected” +
1723 employing LAPACK for matrix inversion +

continued . . .



98 B DAMASK Performance

. . . continued
rev change expected

influence

1668 changed array order to be fast in Fortran +
1643 modularisation of spectral solver - -

1540 further modularisation of elasticity -
1534 using preprocessor to avoid dummy functions +
1518 introduced state jump function -

1490 introduced delta state functions -
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(a) Total runtime (Wall time) in minutes.

(b) Memory consumption in mebibyte.

Figure B.1: Performance of the direct variational formulation. Circles indicate one
CPU, cubes two CPUs. Red color indicates the fixed-point without PETSc, green
color the non-linear GMRES provided by PETSc. The two rightmost measurements
are performed with heavily optimized code and comparing the Intel and the GNU
fortran compiler.
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D Abstract
Microstructures of metallic structural materials have become increasingly complex,
incorporating typically more than one microstructural feature to adjust the material
properties according to specific needs. To predict the behaviour of such complex
materials, the underlying effects like interaction of different phases, hardening of slip
systems, twinning, etc. have to be considered in order to produce applicable results.
Usually, this is done with crystal plasticity simulations.

In this thesis the possibilities and capabilities of high-resolution crystal plasticity
simulations are presented and discussed. Giving several examples, it is shown how the
application of crystal plasticity simulations helps to understand the micro-mechanical
behaviour of crystalline materials.

To avoid the high computational costs associated with crystal plasticity simulations
that arise from (i) the evaluation of the selected constitutive law, and (ii) the solution of
the associated mechanical boundary value problem, both contributions to the runtime
have to be kept small. This is done by (i) employing a rather simple—and therefore
fast—constitutive model, and by (ii) using an effective spectral method employing
fast Fourier transforms for solving the partial differential equations describing the
mechanical behaviour. While the spectral method based solvers show exponential
convergence, their application is limited to volume elements with periodic boundary
conditions. Here, an improved spectral solver incorporated into the Düsseldorf advanced
material simulation kit (DAMASK) is used. The performance of this solver is critically
discussed and the results are compared to results obtained with a commercial finite
element solver. It is shown that the performance of the presented numerical approach
allows increasing the resolution of the microstructures beyond typical values to gain a
more detailed view on grain level mechanics. In contrast to simple, fixed-point based
spectral solvers, the presented scheme is also able to handle heterogeneous materials
with large contrast in stiffness (or strength) which gives the opportunity to tackle the
simulation of, e.g., dual phase steels.

Coupled experimental–numerical analyses performed on dual phase steel and mag-
nesium microstructures prove that for highly resolved microstructure discretisations
even a comparably simple phenomenological crystal plasticity model is able to predict
behaviour in good agreement with experimental observations. Both simulation series
complement the experimental investigations to achieve a better understanding of the
experimental results. For the investigation on strain localisation in magnesium, the
experimentally unobtainable data was the exact loading condition of the region of
interest. The simulated results allow deducting the global and local stress state of the
region of interest, which finally enables to interpret the experimental observations on
the shear band formation. The simulation of realistic dual phase steel microstructures
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recall the complex interplay between crystallographic orientation, grain shape and
phase distribution. As a result of these observations it can be concluded that a rather
big volume element is required to serve as a representative volume element. The
investigation also reveals that the mechanical behaviour of the ferritic grains, which
depends on grain size, shape and orientation as well as on chemical composition and
heat treatment, is more complex than expected and might be the key factor to tailor
dual phase steel properties. In contrast, the sensitivity analysis regarding the influences
of the strength of martensite reports its less pronounced influence on the stress and
strain partitioning.

The influence of the subsurface microstructure on the observed local stress and
strain values on a 2D observation plane is investigated with the help of synthetic
microstructures. The dependence of the region of influence on the strain heterogeneity
coming from the mechanical contrast between ferrite and martensite is quantified.
Comparing the differences in the observed behaviour when changing the underlying
microstructure to the differences when using a significantly modified constitutive be-
haviour clearly shows that the details of the constitutive model have a weaker influence.
This justifies the use of the fast phenomenological material point model, although
physically more correct crystal plasticity formulations are available in DAMASK. A
comparison of microstructure generation approaches proves that the use of the fast
standard Voronoi tessellation does not introduce a strong bias on the observed stress
and strain partitioning in single phase materials at the continuum level. It can be
assumed that the standard Voronoi tessellation can also be used without restriction
for crystal plasticity simulations. This motivates to use artificial microstructures to
predict the average response of different material grades. The fast spectral solver is
the key factor in exploiting these findings to set up a virtual laboratory to predict
macroscopic properties—either of existing microstructures to replace time-consuming
and expensive experimental investigation or of artificially designed microstructures to
investigate guidelines for the design of improved alloys. The investigation on strain
pattern formation in hexagonal water ice shows that the phenomenological material
point model is even capable of predicting complex patterning phenomena. However,
from a critical examination of the pattern formation it is deducted that the employed
crystal plasticity model introduces artefacts when it is used in cyclic loading.

Altogether, in this thesis the possibilities and capabilities of high-resolution crystal
plasticity simulations are presented and discussed. The simulations have been enabled
by an advanced spectral method based solver. Using real and synthetic microstructures,
a vast amount of micro-mechanical data is obtained that help to understand the
mechanics of different crystalline materials.



E Zusammenfassung
Moderne metallische Strukturmaterialien haben komplexe Mikrostrukturen, da typi-
scherweise eine Kombination verschiedener Mikrostrukturmechanismen dafür genutzt
wird, um die gewünschten mechanischen Eigenschaften zu erreichen. Um das Verhalten
solcher Materialien vorherzusagen, müssen daher Effekte wie die Interaktion verschiede-
ner Phasen, das Verfestigen von einzelnen Gleitsystemen, mechanische Zwillingsbildung,
usw. berücksichtigt werden um valide Vorhersagen treffen zu können. Dies geschieht
üblicherweise mit der Hilfe von Kristallplastitzitätssimulationen.

In dieser Arbeit werden die Möglichkeiten und das Potential von hochaufgelösten
Kristallplastizitätssimulationen präsentiert und diskutiert. An verschiedenen Beispie-
len wird gezeigt, wie die Anwendung von Kristallplastitizätsberechnungen zu einem
verbesserten Verständnis der Mikromechanik von kristallinen Werkstoffen beitragen
kann.

Um die Laufzeiten von Kristallplastizitätssimulationen, die von (i) der Auswer-
tung des gewählten konstitutiven Gesetzes und (ii) der Lösung des dazugehörigen
mechanischen Randwertproblems stammen, klein zu halten, werden beide Beiträge
minimiert. Dies wird erreicht durch (i) das Verwenden eines relativ einfachen und
schnellen Materialmodells und (ii) durch die Verwendung eine effizienten, auf schnel-
ler Fouriertransformation basierenden Spektralmethode zur Lösung der Gleichungen
die das mechanische Verhalten beschreiben. Diese Methode zeigt ein exponentielles
Konvergenzverhalten, ihre Anwendung ist aber auf Volumenelemente mit periodischen
Randbedingungen beschränkt. Für die Simulationen wird eine Löser verwendet, der auf
einer verbesserten Version dieser Methode basiert und in DAMASK (the Düsseldorf
advanced material simulation kit) implementiert ist. Die Performance des Löser wird
kritisch untersucht und die Ergebnisse werden mit denen eines kommerziellen Finite
Elemente Methode Codes verglichen. Es wird gezeigt, wie die Fähigkeiten des verwen-
deten Ansatzes dazu benutzt werden können, Mikrostrukturen höher aufzulösen als es
typischerweise üblich ist, was einen besseren Einblick in die Mikrostrukturmechanik
erlaubt. Im Gegensatz zum einfachen, fixpunktbasierten Verfahren erlaubt es das prä-
sentierte Verfahren außerdem, heterogene Materialien mit einem hohen mechanischen
Kontrast in Steifigkeit oder Festigkeit zu simulieren und es kann daher genutzt werden,
um z.B. Dualphasenstähle zu untersuchen.

Gekoppelte experimentell–numerische Untersuchungen von Dualphasenstahl- und
Magnesium-Mikrostrukturen zeigen, dass für hochaufgelöste Mikrostrukturdiskretisie-
rungen auch eine relative einfache, phenomenologische Kristallplastitzitätsbeschreibung
in der Lage ist, die experimentellen Ergebnisse zu reproduzieren. Die Simulations-
studien ergänzen die experimentellen Untersuchungen und führen zu einem besseren
Verständnis der experimentellen Ergebnisse. In der Untersuchung der Dehnungslokalisa-
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tion in Magnesium ist es experimentell nicht möglich, den genauen Belastungszustand
der untersuchten Region zu bestimmen. Die Simulation erlaubt es, auf die globale
und lokale Spannung zu schließen, was es ermöglicht die experimentell beobachtete
Entstehung eines Scherbandes zu verstehen. Simulationen von realen Dualphasenstahl-
Mikrostrukturen zeigen, wie komplex die Interaktionen zwischen kristallographischer
Orientierung, Korngestalt und Phasenverteilung ist. Aus den Beobachtungen kann
geschlossen werden, dass ein relativ großes Volumen benötigt wird, um eine repräsen-
tative Struktur abbilden zu können. Die Untersuchungen zeigen außerdem, dass das
mechanische Verhalten der Ferrit-Körner, welche von Korngröße- und form, kristallo-
graphischer Orientierung ebenso wie von der chemischen Zusammensetzung und der
Wärmebehandlung abhängt, komplexer ist als zuvor angenommen und möglicherweise
ein großes Optimierungspotential bildet. Im Gegensatz dazu, zeigt eine Sensitivitäts-
analyse bezüglich der Festigkeit des Martensits, dass dessen Verhalten einen relativ
schwachen Einfluss auf die beobachtete Spannungs- und Dehnungsverteilung hat.

Der Einfluss der unterliegenden Mikrostruktur auf die Spannungs- und Dehnungs-
verteilung in einer 2D Beobachtungsebene ist mit Hilfe von künstlichen Mikrostrukturen
untersucht. Aus dem Vergleich der Unterschiede in dem beobachteten Verhalten beim
Verändern der darunterliegenden Mikrostruktur zu dem Verhalten bei einem geänderten
konstitutiven Verhalten wird klar, dass eine Veränderung des Materialverhaltens einen
deutlich geringen Einfluss auf das beobachtete Verhalten hat. Dies rechtfertigt die
Benutzung des einfachen, aber schnellen phenomenologischen Modells anstatt der
besseren, physikalisch korrekteren Modelle die ebenfalls in DAMASK implementiert
sind. Der Vergleich zweier Methoden zur Mikrostrukturerzeugung zeigt, dass die
schnelle und einfache Voronoi Tesselierung keinen entscheidenden Einfluss auf die
berechnete Spannungs- und Dehnungsverteilung in einphasigen Materialien hat wenn
eine Kontinuumsbeschreibung verwendet wird. Es kann angenommen werden, dass die
Voronoi Tesselierung ohne Einschränkung für Kristallplastizitätssimulationen verwendet
werden kann. Der schnelle Spektrallöser ist daher perfekt geeignet, um in einem
virtuellen Labor die makroskopischen Eigenschaften von Materialien vorherzusagen, sei
es als Ersatz für aufwändige mechanische Tests an bestehenden Mikrostrukturen oder
um anhand von künstlichen Mikrostrukturen Richtlinien für verbesserte Legierungen
zu entwickeln. Die Untersuchung von Dehnungsmustern in hexagonalem Wassereis
zeigen, dass das phenomenologische Materialmodell sogar in der Lage ist, komplexe
Musterbildung vorherzusagen. Allerdings zeigt eine kritische Diskussion der Ergebnisse,
dass dieses Modell möglicherweise im Falle zyklischer Beanspruchung unphysikalische
Vorhersagen macht.

In dieser Arbeit gezeigt welche Fähigkeiten und Möglichkeiten Kristallplastizitäts-
simulationen haben. Hochaufgelösten Simulationen werden durch einen schnellen Löser
ermöglicht. Eine Unmenge mikromechanischer Daten, erzeugt an realen und synthe-
tischen Mikrostrukturen ist dabei behilflich, das mechanische Verhalten kristalliner
Werkstoffe zu verstehen.
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Acronyms
AFM atomic force microscopy

Ar Argon

BC boundary condition

bcc body-centered cubic

BSE backscatter electron

BVP boundary value problem

CP crystal plasticity

CRSS critical resolved shear stress

DAMASK Düsseldorf advanced material simulation kit

DFT discrete Fourier transform

DIC digital image correlation

DP dual phase

EBSD electronic backscatter diffraction

ECCI electron channelling contrast imaging

fcc face-centered cubic

FEM finite element method

FFT fast Fourier transform

FFTW fastest Fourier transform in the west

FIB focused ion beam

GMRES generalised minimal residual method

GND geometrically necessary dislocation

hcp hexagonal close-packed
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hex hexagonal

IPF inverse pole figure

IQ image quality

M2i Materials Innovation Institute

Mg Magnesium

MPIE Max-Planck-Institut für Eisenforschung GmbH

PDE partial differential equation

PETSc portable, extensible toolkit for scientific computation

RMS root mean square

ROI region of interest

RVE representative volume element

SE secondary electron

SEM scanning electron microscopy

VE volume element



Nomenclature

Latin Letters

Symbol Description Unit
a fitting parameter
A acoustic tensor
B body
b Burger’s vector m
B left Cauchy–Green deformation tensor -
C right Cauchy–Green deformation tensor -
C stiffness tensor Pa
D reference stiffness tensor Pa
E Young’s modulus Pa
E0 Green–Lagrange strain tensor -
Et Euler–Almansi strain tensor -
F Fourier transform
F non-linear operator
F deformation gradient -
H Heaviside function
H0 displacement gradient -
Ht inverse displacement gradient -
i imaginary unit
I identity, unit matrix
J Jacobian determinant of the deformation gradient -
J2 2nd invariant of the deviatoric part of the Cauchy stress Pa2

k angular frequency 1/s
L Lagrange funtional
l side length m
L velocity gradient m/s
M Taylor factor
n normal vector
N number of sampling points
n rate sensitivity parameter
P preconditioning operation
P 1st

Piola–Kirchhoff stress tensor Pa
R rotation tensor -
t traction N
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S compliance tensor Pa-1

S 2nd
Piola–Kirchhoff stress tensor Pa

s line direction m
u displacement m
U right stretch tensor -
V left stretch tensor -
v material velocity m/s
x coordinates in reference configuration m
y coordinates in current configuration m

Greek Letters

Symbol Description Unit
α weight for equilibrium -
δ unit impulse function
β weight for compatibility -
Δ deviation
ε Cauchy strain tensor -
γ shear strain -
Γ Γ-operator for Green’s function
κ frequency Hz
λ stretch ratio -
Λ Lagrange multiplier
ξ microstructural state
σ Cauchy stress tensor, infinitesimal stress tensor Pa
τ polarisation field Pa
τ shear stress Pa
ω rotation -
χ deformation map

Superscripts

Symbol Description
′ deviatoric part of a tensor
· derivative with respect to time
~ fluctuating part of a quantity
– average quantity, negative quantity for Miller indices
k index
m index

Subscripts

Symbol Description
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e elastic part
p plastic part

ref reference value
t quantity in current configuration

vM von Mises equivalent of a tensorial quantity
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